martedì 5 febbraio 2013

Considerazioni allometriche sembrano indicare un piccolo errore nella formula del BMI proposta dal professore Trefheten

 

E’ molto probabile che la maggior parte del lettori conoscano l’indice di massa corporea. Chi infatti, non si e’ trovato almeno una volta nella sua vita a dover fare una dieta per recuperare il peso forma? La sua definizione risale al 1830 grazie allo scienziato A. Quetelet che derivo’ questa formula per stimare la “grassezza” del corpo umano. La formula e’ molto semplice: si tratta del rapporto tra il peso in chilogrammi e il quadrato dell’altezza espressa in metri.

Facciamo un esempio. Se il mio peso e’ di 100Kg e l’altezza di 1,80 metri allora il mio indice di massa corporea tipicamente espresso con l’acronimo BMI risulta essere di 30,86 Kg/m2.

Questo parametro da molti e’ considerato un buon indice per giudicare se una persona ha o no problemi di peso (obesita’ o anoressia). Nel grafico sottostante e’ riportato il peso in Kg sull’asse delle ordinate e l’altezza in metri su quello delle ascisse. I diversi colori indicano il grado di “grassezza” e di “magrezza” di una persona.

Va precisato, tuttavia, che è errato utilizzare solo altezza e peso come dati sufficienti per calcolare il peso ideale, trascurando caratteristiche morfologiche di base, quali larghezza delle spalle, larghezza ossea del bacino, circonferenza cranica, rapporto tra lunghezza delle gambe e lunghezza del tronco, corporatura di tipo tendenzialmente muscoloso o flaccido e tanti altri fattori, o fattori ancora più basilari come il sesso dell'individuo.

Secondo il professore Nick Trefethen, un matematico dell’Universita’ di Oxford, la formula stessa dell’indice di massa corporea contiene un errore come egli ha annunciato in una lettera inviata al The Economist (link):

“Se tutte e tre le dimensioni di un umano scalassero allo stesso modo durante la sua crescita, allora una formula del tipo peso/altezza3 andrebbe bene. Ma non e’ cosi. Comunque peso/altezza2, l’attuale formula del BMI, non e’ realistica.

Un’approssimazione migliore della realta’ e’ data da peso/altezza2.5 che e’ la formula che io propongo. Se si riporta il peso delle persone verso la loro altezza il risultato e’ qualche cosa di molto vicino alla mia formula. “

L’attuale BMI, sempre secondo il professore Trefethen comporta confusione e risultati fuorvianti. A causa del termine altezza2, la formula divide il peso per un numero troppo grande per persone basse e troppo piccolo per perone alte. In questo modo le persone basse sono indotte a pensare che loro sono piu’ magri di quanto non siano nella realta’ e le persone alte di essere piu’ grasse di quello che sono.

La formula proposta e’:

New BMI=(1.3M)/(H2.5)

dove M e’ la massa in Kg e H e’ l’altezza in metri.

Come il professore spiega essendo il nostro mondo tridimensionale, la presenza dell’esponente 2 e’ anomala. Ci si aspetterebbe infatti un esponente pari a 3. Ma le cose non stanno cosi in quanto le misure di altezza e peso delle persone indicano un’esponente pari a 2.5 anche se egli non riporta alcun dato a supporto. Il pre fattore 1.3 deriva dall’assunzione che una persona di peso medio (non riportato) e altezza pari a 1.69 metri debba avere lo stesso BMI della formula di Quetelet. Ovviamente anche in questo caso la scelta e’ del tutto arbitraria. Nel grafico sottostante e’ riportato l’indice BMI verso l’altezza in metri per una persona di peso pari a 75Kg. Da notare come la nuova formula dia un indice BMI sempre piu’ elevato di quello di Quetelet man mano che l’altezza diminuisce. A parita’ di peso piu’ una persona e’ bassa e piu’ e’ alto il suo indice di massa corporea. La differenza tra i due indici invece e’ meno significativa per le persone piu’ alte dove il nuovo indice e’ solo un 10% piu’ basso (non apprezzabile nel grafico).

Al di la delle differenze che la nuova formula introduce come e’ possibile giustificare un andamento del BMI con un altezza elevata ad un esponente pari a 2.5?

L’indice BMI lo possiamo vedere come il rapporto tra la massa e il volume del corpo umano. Supponiamo di poter assimilare quest’ultimo ad un cilindro di altezza h ed area di base pari a pi(d/2)2 dove d e’ il diametro del cerchio che circoscrive le spalle e pi e’ la costante pi greco. Il volume di questo cilindro e’ dato da:

V=pi*h(d/2)2 (*)

Se assumiamo che d~h2/3 allora il rapporto M/V e’:

M/V=(4M/pi)*h7/3=(1.27M)/h2.33

che e’ molto prossimo alla formula presentata dal professore Trefethen.

Ma l’assunzione che la larghezza delle spalle scali con l’altezza elevata a 2/3 e’ corretta? L’unico data base con dati di statura e diametro del corpo umano che sono riuscito a trovare sul web e’ un vecchio articolo del Dr. Magnanini del 1900. Utilizzando la tabella N. 3 in esso riportata ho ottenuto una relazione molto prossima a quella che ho ipotizzato sia per il diametro verso l’altezza che per il volume verso l’altezza. Ci si rende conto che questi dati sono molto vecchi e che andrebbero confermati con valori piu’ recenti. Ma al momento e’ il meglio che ho potuto fare.

L’assunzione che nella formula del BMI vada considerato un esponente 2.5 (o meglio 2.33?) anziche’ 2 significa assumere che il volume del corpo umano scala come un frattale di dimensione pari a ~2.5. L’esponente 2.5 indica che il corpo umano non e’ assimilabile ne ad un piano ne ad un cubo, ma sta nel mezzo. Questo non ci deve sorprendere in quanto sappiamo che tutti noi siamo dei frattali. I nostri polmoni, il nostro sistema circolatorio, il nostro cervello sono tutte strutture frattali. La geometria frattale permette di avere figure geometriche con area finita e perimetro infinito, volume finito e superficie infinita. La maggior parte degli oggetti naturali sono composti da molti differenti tipi di frattali intrecciati uno nell’altro, ed ognuno con una sua dimensione
Il tipo di relazione ipotizzata tra il volume e l’altezza (o equivalentemente tra diametro ed altezza) e’ molto comune in biologia e’ prende il nome di relazione allometrica. A differenza delle relazioni isomeriche dove la variabile y e una x sono legate tra loro in modo lineare (cioe’ y=kx) quelle allometriche mostrano una dipendenza non lineare (y=bxa con a≠1). Per capire meglio il concetto basta dare un occhiata alle due immagini sottostanti. Assimilando l’albero ad un triangolo in caso di relazione isomerica significa che col trascorrere del tempo i tre lati aumenteranno tutti dello stesso fattore, mentre questo non e’ vero nel caso delle relazioni allometriche.

 

Relazione isomerica

Relazione allometrica

Le relazioni allometriche del tipo potenza sono una classe di relazioni molto importanti in quanto hanno la proprieta’ di non avere una lunghezza di scala particolare (infatti si chiamano scale-free) e valgono per diversi ordini di grandezza. Oggetti invarianti per scala hanno lo stesso aspetto quando vengono riscalati in modo opportuno (...di nuovo i frattali).

Ecco perche’ le relazioni allometriche sono delle leggi di potenza e non un esponenziale. Infatti nel caso che

Y=bxa

Se riscaliamo la x in rx si ha

Y=b(rx)a=braxa=b’xa

che ha la stessa forma funzionale iniziale. Nel caso invece di una legge esponenziale si ha:

y=be-ax

e riscalando la x in rx si ha:

y=be-arx

che come si vede non e’ la stessa forma iniziale in quanto quest’ultima ha una scala caratteristica data da 1/ar contro la scala 1/a di quella iniziale. Una relazione allometrica molto famosa e’ quella che va sotto il nome di legge di Gutenberg-Richter che lega l’intensita’ dei terremoti espressa in magnitudo verso la frequenza con con cui i terremoti si presentano. Essendo scale-free la relazione vale per i terremoti di piccola magnitudo fino ad arrivare a quelli catastrofici. Essa ci dice che ci sono tanti terremoti di piccola intensita’ e raramente quelli catastrofici.

Se ci fosse una scala tipica allora la distribuzione dei terremoti avrebbe avuto la tipica distribuzione gaussiana come quella indicata qui per l’altezza dei maschi.

Un’altra legge di scaling come quella dei terremoti e’ la relazione di Kleiber che stabilisce che il metabolismo degli esseri viventi varia con la massa3/4. Come potete vedere nel grafico seguente questa relazione vale per i batteri fino agli elefanti e le balene (circa 27 ordini di grandezza per la massa).

  Ad oggi questa relazione non c’e’ ancora un accordo tra gli scienziati. Infatti sulla base di semplici ragionamenti basati sulla geometria euclidea l’esponente dovrebbe essere 2/3 e non 3/4. Vediamo perche’. Un corpo di lunghezza L ha una superficie proporzionale ad L2 ed un volume proporzionale a L3. Poiche’ la densita’ e’ un valore costante abbiamo:

L=kM1/3

Poiche’ il metabolsimo e’ proporzionale alla quantita’ di calore sviluppata R, e quest’ultima e’ proporzionale alla superficie si ha

R=k’L2

e quindi

R=k”M2/3

Come giustificare allora l’esponente 3/4 osservato?

Tre scienziati (James Brown, Geoffrey West, Brian Enquist) hanno suggerito una possibile spiegazione considerando non la superficie o il volume del corpo ma quella delle strutture interne (per esempio il sistema circolatorio, quello respiratorio etc) che trasportano i nutrienti e i materiali ai diversi organi del corpo. In pratica essi suggeriscono di considerare la geometria frattale dei vari sistemi interni piu’ che la geometria del corpo come un tutt’uno.

Con riferimento alla figura seguente, indichiamo con N il numero di ramificazioni del frattale ( N=5 per l’esempio riportato in figura) e con n il numero di rami per ogni livello (n=3 per il nostro caso).

Brown e colleghi ipotizzano che N sia direttamente proporzionale al rapporto ln(size)/ln(n), cioe’

    N=b(ln(size)/ln(n))

Il parametro b e’ il parametro di scala. Il size indica il volume della struttura frattale che trasporta i nutrienti. Invertendo questa relazione possiamo

 

ricavare il parametro di scala:

b=N(ln(n)/ln(size))

Ovviamente il parametro size dipende da N, dal rapporto t tra tra il raggio di un ramo ad un dato livello e quello successivo e da come i rami diminuiscono in lunghezza (g) da un livello all’altro. Si dimostra che il volume scala come:

(gt2)-N

Sostituendo questo valore nell’equazione precedente otteniamo:

b=- ln(n)/ln(tb2)

Brown e i suoi colleghi dimostrarono che g e t sono proporzionali rispettivamente a

n-1/3 e n-1/2. Facendo le opportune sostituzioni si ottiene il risultato cercato:

b=3/4

Il ragionamento e’ molto convincente, anche se recentemente diversi scienziati hanno mostrato che c’e’ ancora una grossa incertezza sul reale valore del parametro di scala b. E’ uguale a ¾ come suggeriscono Brown e i suoi due colleghi e’ uguale a 2/3 come suggerisce il semplice ragionamento basato sulla geometria euclidea? Quanto e’ difficile distinguere dai dati sperimentali un esponente 3/4 da 2/3? In effetti se ci pensate un attimo la differenza tra queste due frazioni non e’ tanta: 0.67 contro 0.75, una separazione di soli 0.08. Il fit dei dati sperimentali mostrato nel seguente grafico (in scala bilogaritmica) fa capire quanto e’ difficile stabilire se vale una o l’altra ipotesi.

Le due linee sono molto vicine tra loro e poiche’ i parametri ricavati sperimentalmente sono affetti da incertezza non e’ facile stabile quale delle due rette e’ quella che meglio approssima i dati. Quindi non ci resta che aspettare piu’ dati e altri studi per capire in che direzione muoversi. Rimane comunque un fatto misterioso ed affascinante. Se queste relazioni risultano valide su un cosi ampio spettro di valori significa che siamo di fronte a qualche legge universale che probabilmente esula dall’ambito della sola biologia. Una risposta a questa osservazione potrebbe venire dagli scienziati che si occupano di complessita’. La ricerca del santo graal della teoria del tutto continua.

sabato 19 gennaio 2013

La super-formula della Natura

Da sempre la forma delle piante e degli organismi ha  affascinato e incuriosito scienziati e ricercatori di tutto il mondo. In natura sono molto comuni le forme sferiche, circolari e cilindriche anche se non mancano forme anche molto piu’ complesse.

Molte di queste oggi possono essere descritte tramite degli appropriati algoritmi capaci di generare delle strutture virtuali. Tuttavia non e’ possibile trovare un algoritmo che riesca a descrivere esattamente una struttura naturale.

Nel 2003, comunque, un botanico belga, Johan Gielis, ha scoperto una “super-formula” capace di descrivere molte figure geometriche presenti in Natura semplicemente variando alcuni parametri caratteristici.

Per un certo valore di tali parametri si ottiene un cerchio, per un altro un quadrato, per un altro ancora un triangolo, e cosi via. Gielis, nel suo articolo pubblicato sul giornale, American Journal of Botany, mostra come molte delle forme della Natura, possono essere interpretate come dei semplici cerchi modificati.

La formula e’ data da:

Si tratta dell’equazione parametrica di una curva espressa in coordinate polari, dove r e’ il raggio e theta  l’angolo. Al variare dei parametri a, b, m, n1, n2 e n3 questa curva puo’ trasformarsi in quadrati, cerchi, ellissi, e tante altre figure da scoprire.

La variabile m definisce i zero-goni (m=0), mono-goni (m=1) e bi-goni (m=2) come anche  triangoli, quadrati e poligoni con un numero di simmetrie rotazionali maggiore. Il valore di m permette agli assi ortogonali di piegarsi all’interno e all’esterno come in un ventaglio.

I valori di n1 e n2 determinano se la forma e’ iscritta o circoscritta dal cerchio unitario. Per n2=n3<2 la forma e’ iscritta (sotto-poligoni) mentre per n2=n3>2 la forma e’ circoscritta dal cerchio unitario (super-poligoni).

Nelle tabelle di seguito vengono mostrate alcune forme che possono essere generate con la super-formula.

Esempio di varie forme ottenute con la super-formula per diversi valori dei suoi parametri
Famiglie di curve generate dalla super-formula con a=b=1, e valori di n1=n2=n3 che vanno da 1 a 8.

Una grande varieta’ di forme dai diversi regni della natura (come per esempio il regno animale e vegetale) possono essere modellate con la super-formula. Mai nessuno era riuscito ad inglobare in una singola formula cosi tante forme diverse in Natura come si puo’ vedere nella figura 3. Le diverse forme della Natura, in questo caso, altro non sono che il risultato di una combinazione di numeri. Un’ appropriata estensione della super-formula permette di descrivere anche forme piu’ complesse ed irregolari che si trovano nel nostro mondo.

Ricorrendo alle parole del suo scopritore Gielis possiamo dire che: la super-formula permette di catturare la semplicita’ matematica e la bellezza di molte forme naturali che differiscono semplicemente per il valore di 5 parametri; essa permette una semplificazione della complessita’ di certe forme e di acquistare una nuova conoscenza sulla simmetria della Natura. Visto che c’e’ una perfetta corrispondenza con le forme naturali, continua Gielis, e’ possibile postulare che la super-formula riveli la geometria base della Natura e quindi essa possa diventare un giorno un potente mezzo per studiare il mondo intorno a noi.

Al momento ancora non e’ chiaro se la super-formula di Gielis avra’ un impatto o no sulle attuali teorie biologiche riguardanti le forme e le simmetrie naturali. Cio’ nondimeno, questa formula fornisce a tutti delle nuove opportunita’ per divertenti e colorate esplorazioni grafiche.

La straordinaria coincidenza tra le forme della Natura e quelle della super-formula.

lunedì 10 dicembre 2012

L’asimmetria del tempo.

 

Analizzando i dati collezionati in 10 anni di esperimenti (miliardi di collisioni tra particelle) i ricercatori della collaborazione Babar, hanno trovato che particelle di un certo tipo (chiamate mesoni Bo) si trasformano in particelle di un altro tipo con ritmi diversi a secondo della direzione del tempo, una violazione della simmetria del tempo ed una conferma che qualche processo subatomico ha una direzione preferenziale del tempo. I dati sono stati pubblicati sul giornale Physical Review Letters. Si tratta di risultati significativi con un errore minore di 1 su 10^43 (ben oltre la soglia per dichiarare una scoperta).

Nell’immagine semplificata riportata qui sotto, due diversi mesoni B stanno passando da uno stato all’altro (rappresentato dai diversi colori); comunque il B-blu cambia nel B-rosso piu’ rapidamente di quanto faccia il rosso-B in blu-B (un processo che va indietro nel tempo come mostrato dall’orologio al contrario). Per queste trasformazioni il tempo e’ stato provato essere asimmetrico. I cambiamenti avvengono con un ritmo diverso a seconda della freccia del tempo in accordo con I risultati dell’esperimento Babar.

Vediamo un attimo che cosa e’ la collaborazione Babar. Si tratta di un esperimento designato per studiare alcune delle questioni fondamentali dell’Universo esplorando I suoi costituenti fondamentali: le particelle elementari. Originariamente l’esperimento era stato realizzato per spiegare quali fossero le differenze tra materia e antimateria e del perche’ l’Universo contiene piu’ materia che antimateria. Ma durante gli anni di servizio, Babar ha fornito altre risposte comunque fondamentali per la comprensione dell’Universo come:
  • Ci sono altre particelle oltre a quelle gia’ scoperte?
  • Come e’ possibile migliorare la nostra comprensione delle proprieta’ delle particelle e di come loro interagiscono?
  • Le particelle fondamentali si legano insieme in modi che noi ancora non conosciamo?
  • Quali sono I parametri che descrivono il mondo delle particelle?
  • Le particelle di materia oscura interagiscono con le normali particelle in qualche altro modo oltre che con la gravita’?

Ma come funziona l’esperimento Babar?

Utilizzando l’acceleratore SLAC si fanno scontrare elettroni e positroni (elettroni con carica positiva) a differenti energie, generando dei mesoni B che vivono per un corto periodo di tempo prima di decadere (vedi schizzo sottostante). Gli esperimenti per stabilire l’asimmetria del tempo sono stati fatti con questi mesoni B.

Gran parte delle nostre conoscenze fisiche derivano dalla nozione di simmetria. La proprieta’ fondamentale di simmetria alla base del cosiddetto modello standard e’ descritta dal teorema CPT L’acronimo si riferisce a delle particolari trasformazioni:

1) Charge conjugation: scambio della carica da positiva a negativa e viceversa

2) Parity operation: scambio della destra con la sinistra e viceversa (e’ come guardare la realta’ allo specchio)

3) Time reversal: fare andare indietro il tempo nel senso di sostituire nelle relazioni fisiche tutte le t con –t).

Si presume che le leggi della fisica siano simmetriche rispetto alle trasformazioni CPT cioe’ debbano rimanere invariate (le stesse) quando applichiamo l’operazione CPT. Ma cosa dovrebbe accadere alla materia se ad essa applichiamo le trasformazioni CPT? Dovremmo ottenere dell’antimateria.

Per ogni particella della materia ordinaria deve esistere una particella di antimateria con la stessa massa, vita media e spin ma con carica e momento magnetico opposto. 
Un esempio e’ costituito dai positroni o antielettroni e dagli antiprotoni (dei protoni negativi) che insieme formano un atomo di antidrogeno.  

Ma perche’ e’ cosi importante il teorema CPT e la sua eventuale violazione? La risposta sta nell’asimmetria tra materia e antimateria presente nel nostro universo. Cerchiamo di approfondire questo tema.

La materia orindaria come tutti sanno e’ fatta di atomi che a loro volta sono costituiti da un nucleo centrale con degli elettroni che gli orbitano intorno. I nuclei a loro volta sono fatti di protoni e neutroni i cui costituenti finali sono i cosiddetti quarks (up e down in diverse combinazioni).In definitiva quindi tutto cio’ che e’ all’interno del nostro universo e’ fatto di quarks ed elettroni. Queste sono quelle che noi chiamiamo le particelle elementari.

Oltre alla materia esiste anche quella che I fisici chiamano l’antimateria. Essa e’ uguale alla materia ordinaria a differenza della carica elettrica che e’ di segno opposto. Da un punto di vista teorico e’ possibile avere degli antinuclei, antiatomi e anche anti-solidi. Ma dov’e’ l’antimateria nell’universo? Secondo la meccanica quantistica che regola I fenomeni a scala atomica e subatomica quando materia e antimateria si incontrano si annichilano trasformando la loro energia in luce.
>Anche se l’antimateria sembra essere qualche specie di materia esotica, essa viene utilizzata per esempio negli ospedali per la PET (positron emission tomography).

Ritornando al nostro universo, perche’ oggi la stragrande maggioranza degli oggetti sono fatti di materia e non di antimateria? Poiche’ materia ed antimateria si annichilano, subito dopo il Big Bang essendo la quantita’ di materia ed antimateria la stessa noi avremmo dovuto avere un universo vuoto con all’interno solo luce. Ma noi sappiamo che non e’ cosi. E allora come sono andate le cose?

La risposta sembra venire dai risultati sperimentali di Babar che indicano che molto probabilmente le leggi della fisica per la materia e antimateria non sono esattamente le stesse avendo cosi all’inizio del nostro universo uno sbilanciamento piccolo verso la materia e con la scomparsa dell’antimateria dopo l’interazione con la materia ordinaria con conseguente emissione di luce. E questa asimmetria potrebbe essere dovuta proprio alla violazione delle trasformazioni CP e CPT. Qui di seguito un esempio di trasformazione CP utilizzando un quadro di Escher.

domenica 11 novembre 2012

L’armonia planetaria

Il grande scienziato Laplace, era convinto che se avessimo potuto conoscere la posizione e la velocita’ iniziale di tutti i corpi presenti nel cosmo, saremmo riusciti a predire con esattezza il futuro e il passato dell’Universo. Se questa affermazione risultasse vera, conoscendo le masse, le velocita’ e le posizioni di tutti i corpi del sistema solare, sarebbe possibile determinare le loro traiettorie per tempi arbitrariamente lunghi. La descrizione del moto dei pianeti, ha stimolato da sempre la mente di diversi scienziati. Scoperte decisive nella determinazione delle leggi fisiche che governano il moto dei pianeti sono state fatte da scienziati del calibro di Copernico, Galileo, Keplero e Newton. Nonostante tutti gli sforzi, ad oggi la meccanica celeste dei due corpi (per esempio il sistema terra-sole) e’ l’unica ben sviluppata e compresa, mentre il problema dei tre o piu’ corpi (per esempio sole-terra-luna) e’ molto complesso. Esso, infatti non ammette soluzioni analitiche, e l’unica possibilita’ rimane quella di ricorrere a metodi numerici. Anche la versione semplificata del modello, il cosiddetto problema dei tre corpi ristretto, in cui la massa di uno dei corpi e’ trascurabile rispetto alla massa totale del sistema, puo’ esibire delle dinamiche molto complesse, nel senso che piccole variazioni nelle condizioni iniziali possono portare a differenze significative nelle traiettorie future dei corpi. In questo caso si parla di sistema dinamico caotico. Indicando con , una piccolissima differenza tra due condizioni iniziali, in un sistema dinamico caotico, la differenza al tempo t, tra le due traiettorie inizialmente molto vicine sara’ determinata dalla relazione

dove  

 

 

e’ chiamato l’esponente di Lyapunov. Notare che per tempi

l’amplificazione di fluttuazioni microscopiche e’ cosi’ spinta che la prevedibilita’ di qualsiasi traiettoria individuale e’ completamente impossibile.

Ma cosa possiamo dire riguardo al nostro sistema solare? Si tratta di un sistema dinamico stabile? E’ possibile per esempio, predire il moto di un singolo pianeta per i prossimi miliardi di anni?

Essendo il sistema solare, un sistema con molti gradi di liberta’ (9 pianeti piu’ il sole che moltiplicato per i 3 gradi di liberta’ di ognuno fanno 30 gradi di liberta’) e’ chiaro che ci si aspetta un sistema dinamico caotico. E questo in effetti e’ il risultato ottenuto di recente dal team del ricercatore Laskar, che con delle simulazioni numeriche molto accurate, e’ riuscito a stimare un tempo di Lyupanov per l’intero sistema solare di circa 5 milioni di anni. Questo significa che un’incertezza iniziale di 1 Km sulla posizione iniziale di un pianeta, puo’ arrivare ad un’unita astronomica (AU=1.5E+8 Km) dopo 95 milioni di anni.

Il fatto che l’esponente di Lyapunov non e’ molto grande, significa che il sistema solare non ha un alto grado di caoticita’, dovuto alla possibilita’ di trascurare l’interazione gravitazionale tra i pianeti rispetto a quella tra i pianeti e il sole. Come esempio di esponente di Lyapunov, nella figura 1, viene riportata la divergenza tra due orbite di Plutone inizialmente molto vicine al trascorrere degli anni.

 

Figura 1: La divergenza d (in unita’ astronomiche) tra due orbite di Plutone inizialmente vicine, cresce esponenzialmente nel tempo (in milioni di anni). Il fit lineare dei dati, comporta un tempo di Lyupanov dell’ordine dei 10 milioni di anni.

Gli studi al computer della storia caotica del sistema solare, sono diventati un ramo molto importante ed interessante della fisica non-lineare, che hanno aperto nuove possibilita’ per la comprensione delle orbite dei pianeti del sistema solare e di altre stelle. In effetti, ci sono state speculazioni sulla struttura numerica delle orbite dei pianeti, fin dal diciottesimo secolo, quando J. Titius e J. Bode notarono una relazione regolare tra le distanze medie dei pianeti dal sole come indicato nella Tabella 1. Ponendo la distanza Terra-Sole uguale ad un’unita’ astonomica (AU), la regola di Titius-Bode e’ data da:

dove a e’ la distanza media del pianeta dal sole in AU ed n e’ il numero planetario che corrisponde a 0 per Venere e per Mercurio. Questa formula riusci’ a predire con buona approssimazione la posizione di Urano, scoperto nel 1781, cioe’ 9 anni dopo la formulazione della regola. Tuttavia per Nettuno e Plutone scoperti successivamente, la formula di Titius-Bode si e’ dimostrata essere non precisa e questo ha fatto si che diversi studiosi, hanno elaborato una versione piu’ recente capace di predire non solo le distanze di Nettuno e Plutone ma anche dei satelliti di Giove, Saturno ed Urano. L’accordo tra le distanze predette e quelle osservate per i vari satelliti e’ qualche cosa di eccezionale con degli errori di alcuni per cento. La versione recente della legge di Titius-Bode e’ data da:

con k una costante uguale a 0.21363 AU e

 

Ultimamente, sempre il ricercatore Laskar e il suo team, usando una combinazione di tecniche numeriche ed analitiche, ha scoperto la seguente relazione, valida non solo per il sistema solare ma anche per i pianeti extrasolari recentemente scoperti:

dove a, come sempre e’ la distanza media dal sole, n il numero planetario e k una costante. Laskar ha trovato k=0.14 per i pianeti interni del sistema solare e 0.81 per i pianeti esterni.

 

Tabella 1: Distanze medie planetarie dal sole in unita’ astonomiche e corrispondenti valori della regola di Titius-Bode, dei risultati di Laskar e del modello quantistico di Nottale.

Sia la legge di Titius-Bode che i calcoli numerici di Laskar, suggeriscono un qualche ordine sottostante, una qualche regolarita’ celeste paragonabile a quella dell’atomo di idrogeno prima della versione quantizzata di Bohr e Schroedinger. Proprio da questo tipo di osservazioni e’ partita l’analisi del gruppo di uno studioso francese, Laurent Nottale, che ha congetturato che le traiettorie degli elettroni negli atomi e i pianeti del sistema solare su una scala temporale maggiore di 0.1 miliardi di anni subiscono una sorta di moto Browniano, che e’ continuo ma non differenziabile, come il perimetro di una curva di Koch o di una costa marina. Essi hanno proposto una teoria per calcolare le probabilita’ delle orbite planetarie che da un punto di vista formale sono identiche a quelle della meccanica quantistica formulate da Schroedinger e Bohr per le orbite elettroniche negli atomi, nonostante l’utilizzo di parametri completamente diversi. Come per il caso dei raggi delle orbite elettroniche dell’atomo di idrogeno, proporzionali al quadrato di n, Laurent Nottale e il suo gruppo ritiene che le distanze medie dei pianeti siano date da:

dove n e’ l’indice orbitale e alfa una costante di proporzionalita’ per i pianeti interni (indicata col pedice i) ed esterni (indicata col pedice o).

Poiche’ per i pianeti interni risulta

e l’indice di Mercurio e’ uguale a 3, questo significa che c’e’ la possibilita’ di due pianeti interni molto vicini al Sole, molto probabilmente evaporati dal calore del Sole o uno evaporato (quello piu’ vicino al Sole) e l’altro ancora da scoprire. La costante dei pianeti esterni, invece, e’ pari a 1.125 AU. La relazione di Nottale e’ in ottimo accordo con i dati misurati, compresi gli asteroidi piu’ grandi, i satelliti dei pianeti del sistema solare e anche di molti dei pianeti extrasolari (vedi figura 2).

Ma questi risultati sono delle idee credibili da un punto di vista scientifico o si tratta di semplice numerologia? Al momento e’ difficile dirlo. Solo le osservazioni di altri pianeti extrasolari ed extragalattici, ed ulteriori studi teorici in quest’area potranno fornire, una risposta definitiva. Al momento lasciamoci sorprendere dalla grande efficacia della matematica nel descrivere tutto cio’ che ci circonda dall’infinitamente piccolo all’infinitamente grande.

 

Figura 2: Radice quadrata del rapporto (a/M) con a in AU ed M in masse solari in funzione dell’intero n, per i pianeti interni del sistema solare e alcuni pianeti extrasolari scoperti da poco.

martedì 23 ottobre 2012

0.0001 Il numero della solitudine cosmica

 

Un matematico dell’Università’ di East Anglia, A. Watson, ha rivolto il suo sguardo alle stelle cercando di dare una risposta ad una delle questioni più antiche dell’umanità’: siamo soli nell’Universo? La risposta con molta probabilità e’ si. L’Astrobiologia e’ un nuovo campo della scienza che si occupa dello studio dell’origine, distribuzione, evoluzione e destino della vita ovunque essa si trovi nell’Universo incluso la Terra. A questo proposito il prof. A. Watson ha sviluppato un modello matematico per esaminare la possibilità di presenza di vita intelligente in pianeti simili alla Terra considerando quanto tempo ancora rimane alla terra prima che il Sole diventi troppo brillante per la sopravvivenza della vita. Nell’articolo Implications of an anthropic model of evolution for emergence of complex life and intelligence pubblicato qualche anno fa, A. Watson ha postulato che per degli osservatori intelligenti prima di evolversi c’e’ bisogno di passare attraverso un numero n di fasi molto difficili da un punto di vista evolutivo. Una volta superati questi “gradini”, l’evoluzione procede velocemente fino a che non viene raggiunto il successivo stadio. La vita intelligente si e’ evoluta molto tardi sulla Terra e A. Watson suggerisce che questo può essere legato alla difficolta’ nel superare i primi n stadi più difficili. Egli suggerisce che n e’ meno di 10 e molto probabilmente uguale a 4. Questi stadi includono l’emergenza di batteri unicellulari, batteri complessi pluricellulari, cellule che permettono forme di vita complessa e vita intelligente. Il professore A. Watson pensa che un limite all’evoluzione e’ l’abitabilità’ del pianeta. I nostri modelli fisico/matematici del Sole predicono che esso diventerà più brillante e che ad oggi ha aumentato la sua luminosità del 25% rispetto alla formazione del sistema solare. La nostra biosfera ha bisogno di temperature minori di 50 gradi per sopravvivere, il che suggerisce che la vita avrà “solo” un altro miliardo di anni a disposizione. Questo può sembrare un tempo molto lungo per la nostra scala temporale, ma se confrontato ai 4 miliardi di anni che la vita ha già superato sul nostro pianeta, si capisce che essa e’ nella parte finale della sua esistenza.

A. Watson sostiene che, se un pianeta e’ abitabile per un certo periodo di tempo, e la vita si sviluppa all’inizio di questo periodo, allora e’ probabile che l’evoluzione abbia avuto luogo anche su altri pianeti simili alla Terra. Comunque, siccome l’evoluzione e’ avvenuta sulla Terra solo nella parte finale del periodo di tempo dell’abitabilità’, A. Watson suggerisce che la nostra evoluzione e’ piuttosto improbabile.

Da un punto di vista matematico egli ha derivato le distribuzioni di probabilità di ogni evento cruciale dell’evoluzione. Il suo modello assume che i gradini dell’evoluzione sono intrinsecamente improbabili e che ognuno di essi può manifestarsi solo se i precedenti passi si sono verificati. Tutto il resto dell’evoluzione poi avviene molto rapidamente.

I passi critici vengono considerati degli eventi stocastici, con una probabilità uniforme anche se diversa.  

La proprietà che essi sono intrinsecamente improbabili e’ espressa dalla condizione che il prodotto 

e’ molto minore di 1 dove th e’ il periodo medio dell’abitabilità’ del pianeta. La probabilità per unità di tempo che il primo passo avvenga e’ data da:

La probabilità congiunta sempre per unità di tempo che due eventi, uno al tempo t’ e il secondo a un tempo successivo t e’ data da:

La probabilità che il secondo evento si verifichi e’ ottenuta quindi da:

Continuando in questo modo, la probabilità che l’ennesimo evento si verifichi in sequenza ai precedenti n-1 passi si ottiene da: 

dove K e’ un fattore di normalizzazione.

Usando le registrazioni dei fossili, Watson ha stimato un limite superiore per la probabilità che ogni passo critico si verifichi (10%) che fornisce una probabilità sull’emergenza della vita intelligente minore del 0.01% su 4 miliardi di anni.

Il lavoro sembra dar ragione all’ipotesi della Rare Earth che postula l’emergenza della vita complessa pluricellulare sulla Terra come una improbabile combinazione di eventi astrofisici, geologici e circostanze speciali. A. Watson, sostiene che l’intelligenza e’ ancora più improbabile della “semplice” vita e quindi ancora più improbabile.

Non c’e’ da stare molto allegri. Saremo per sempre destinati alla solitudine cosmica?

http://www.wikio.it