Visualizzazione post con etichetta modello standard. Mostra tutti i post
Visualizzazione post con etichetta modello standard. Mostra tutti i post

venerdì 28 febbraio 2014

Una nuova stima della massa dei neutrini

 
Oggi parliamo di un argomento che mi sta molto a cuore visto che e’ stato argomento della mia tesi di laurea: la massa dei neutrini. All’epoca della mia tesi si pensava che la materia oscura che pervade l’intero universo potesse essere spiegata con la massa dei neutrini. Ci furono diversi esperimenti in tutto il mondo che cercavano di stabilire la massa di questi oggetti evanescenti e quello a cui partecipai anche io (CHARM II) era uno di questi. Si cercavano le cosiddette oscillazioni di neutrini (cioe’ il passaggio spontaneo dei neutrini da un sapore all’altro) previste teoricamente dal grande fisico italiano Bruno Pontecorvo che ho avuto la fortuna di conoscere di persona durante un convegno al CERN di Ginevra. La sua teoria prevede le oscillazioni dei neutrini solo se essi hanno una massa diversa da zero.
 
 
Nella figura sopra, la curva blu rappresenta la probabilità che il neutrino mantenga il sapore originario, mentre la curva rossa rappresenta la probabilità che cambi sapore. La frequenza di oscillazione dipende da Δm2, la differenza tra le masse al quadrato dei diversi neutrini.
 
 
Purtroppo CHARM II non fu in grado di rilevare tali oscillazioni. Esse furono osservate per la prima volta una decina di anni dopo all’osservatorio Giapponese di Super-Kamiokande. Tali esperimenti hanno permesso di determinare un limite superiore alla massa dei neutrini che pur risultando molto piccola non e’ uguale a zero in contrasto con quanto previsto dal Modello Standard. In questi giorni due ricercatori dell’Universita’ di Manchester e Nottingham sembrano aver stabilito con grande accuratezza la massa dei neutrini utilizzando i risultati del satellite Planck il cui compito e’ quello di mappare la radiazione cosmica di fondo (in inglese Cosmic Microwave Background CMB) e le misure della curvatura dello spazio-tempo tramite le lenti gravitazionali (per maggiori dettagli sulle lenti consultare il precedente post sul mio blog).
 
 
La radiazione cosmica di fondo e’ la luce residua dell’universo neonato partita 380000 anni dopo il Big Bang quando il raffreddamento dell’universo permise la formazione degli atomi neutri e alla luce di cominciare il suo grande viaggio attraverso l’oscurita’ dell’Universo ormai divenuto trasparente. I fotoni si separarono definitivamente dalla materia (vedi immagine sotto). Oggi questi fotoni fossili, infiacchiti dai miliardi di anni trascorsi bombardano in continuazione il nostro pianeta. La loro lunghezza d’onda e’ dell’ordine del millimetro e quindi fanno parte dello spettro delle micro-onde, le stesse di quelle prodotte nei nostri forni a micro-onde. Prima che la luce si disaccoppiasse dalla materia l’universo era completamente opaco in quanto i fotoni venivano continuamente catturati dalla materia. La radiazione cosmica di fondo, quindi e’ il segnale piu’ antico che possiamo captare oggi e la cosa piu’ lontana che possiamo osservare. La “mappatura” di questa radiazione di fondo ha permesso di scoprire che 380000 anni dopo il Big Bang la materia non era distribuita uniformemente (cosa che non avrebbe permesso la creazione di tutte le strutture cosmiche oggi visibili) ma c’erano delle disuniformita’ oggi visibili come piccolissime differenze di temperatura visto che l’energia dei fotoni e’ proporzionale alla densita’ della materia. Lo studio della radiazione fossile ha permesso agli scienziati di misurare accuratamente alcune costanti cosmologiche come la quantita’ di materia presente nel nostro Universo e la sua eta’. Tuttavia emergono alcune discrepanze quando si prendono in considerazione strutture dell’Universo su grande scala come la distribuzione delle galassie.
 
 
Come ha spiegato il professor Richard Battye dell’Universita’ di Manchester, il numero di ammassi di galassie osservato e’ minore di quello che i dati del satellite Planck sembrano suggerire. Inoltre i segnali di questi ammassi misurati grazie all’effetto delle lenti gravitazionali sono piu’ deboli di quanto previsto dalla distribuzione della radiazione cosmica di fondo (CMB). Un modo per risolvere questo dilemma e’ ipotizzare che i neutrini abbiano massa. Il loro effetto sarebbe quello di sopprimere la crescita delle strutture dense che portano alla formazione degli ammassi di galassie. L’interazione tra i neutrini e gli altri costituenti della natura e’ molto debole e quindi sono difficili da osservare. Inizialmente (come gia’ detto all’inizio di questo post) si suppose che essi fossero delle particelle prive di massa ma gli esperimenti successivi come quelli delle oscillazioni dei neutrini dimostrarono il contrario. La somma delle masse dei tre sapori di neutrino (elettronico, muonico e tauonico) era stata determinata essere maggiore di 0.06 eV (molto meno di un  miliardo di volte la massa del protone). Nello studio del Professor Battye e dei suoi collaboratori, combinando i risultati del satellite Planck e delle immagini di galassie lontane rese visibili dall’effetto delle lenti gravitazionali, e’ stato stabilito che la somma della massa dei neutrini e’ pari a 0.320+/-0.081 eV. Il Dottor Adam Moss, uno degli autori della ricerca, in un intervista ai giornalisti ha affermato che “se questo risultato verrà confermato da ulteriori analisi, non solo contribuirà ad accrescere le nostre conoscenze del mondo subatomico, ma sarà anche un’importante passo avanti per un’estensione del modello standard della cosmologia sviluppato negli ultimi dieci anni”.

venerdì 20 dicembre 2013

La Super-simmetria alle corde

 

Il modello standard della fisica delle particelle, nonostante i successi registrati negli ultimi anni, tra cui la previsione del bosone di Higgs, non ancora riesce a spiegare completamente il nostro universo. Per esempio non riesce a spiegare la materia oscura che i cosmologi credono riempire l’interno Universo e il perche’ subito dopo il Big Bang sia sopravvissuta la materia all’antimateria. Alcune estensioni del modello standard come la Super-simmetria, riescono a spiegare questi fenomeni prevedendo l’esistenza di nuove particelle chiamate “sparticle” e nuove interazioni.

Come si puo’ vedere dalla tabella la Super-simmetria associa ad ogni fermione (particella con spin semintero – lo spin e’ una grandezza quantistica che non ha equivalente nella meccanica classica anche se per analogia puo’ essere assimilabile ad una rotazione della particella intorno ad un proprio asse) un bosone (spin intero) e viceversa. Si tratta di una simmetria fra fermioni e bosoni. Quindi ogni fermione ha un superpartner bosonico ed ogni bosone un superpartner fermionico. Le coppie vengono chiamate partner supersimmetrici e le nuove particelle chiamate spartner o sparticelle. Notare che lo spin delle sparticelle e’ equivalente a quello delle particelle meno ½. Fino ad oggi, nessuna di queste particelle e’ stata individuata sperimentalmente. Ma essendo la super-simmetria una teoria molto elegante da un punto di vista matematico si tende a credere che essa sia corretta anche se non c’e’ al momento nessun riscontro sperimentale. Anzi. Una delle ultime notizie apparse su Nature riguardante la misura del dipolo elettrico dell’elettrone eseguita dalla collaborazione ACME guidata dal professore David De Mille della Yale University e da John Doyle e Gerald Gabrielse della Harward University (link articolo) sembra mettere alle corde la supersimmetria. Anche se questi ultimi risultati sembrano indicare una non correttezza della teoria super-simmetrica, esistono delle versioni modificate di tale teoria in cui i risultati ottenuti potrebbero essere ancora spiegati. Ma che tipo di misura ha effettuato il gruppo della collaborazione ACME? Che cosa e’ il dipolo elettrico dell’elettrone? In genere si conosce il momento di dipolo di molecole con una loro struttura interna come mostrato in figura (il dipolo per definizione e’ un sistema composto da due cariche elettriche uguali e di segno opposte e separate da una distanza costante nel tempo).

Ma se l’elettrone e’ puntiforme come fa ad avere una struttura interna? E se non ha una struttura interna come fa ad avere un dipolo elettrico? Per capire il dipolo elettrico dell’elettrone bisogna far ricorso alla meccanica quantistica che prende il posto della fisica classica quando scendiamo a livello atomico. Secondo la meccanica quantistica il vuoto pullula di particelle virtuali ( si parla di mare di particelle virtuali) come coppie di elettrone-positrone (elettrone con carica positiva) che si formano e si annichilano di continuo vivendo per frazioni infinitesime di tempo. In una regione dove c’e’ un elettrone lo spazio e’ riempito con queste coppie e poiche’ l’elettrone e’ carico negativamente esso attirera’ a se i positroni e respingera’ gli elettroni virtuali. Ecco come si forma il dipolo. Una nuvola di cariche positive che scherma la carica negativa dell’elettrone cosiddetto nudo (bare electron) cioe’ l’elettrone reale e non virtuale.

 

Se analizziamo questo effetto inserendo tutte le particelle-antiparticelle cariche previste dal modello standard, la nuvola intorno all’elettrone dovrebbe avere una simmetria quasi sferica e quindi un momento di dipolo elettrico inferiore a 10-36 e.cm (ricordiamo che il momento di dipolo come detto precedentemente e’ dato da u=q.d dove q e’ la carica e d la distanza delle due cariche del dipolo). Se estendiamo il modello standard con la Super-simmetria allora la nuvola elettronica dovra’ contenere anche le nuove particelle cariche ( i partner simmetrici delle particelle ordinarie del modello Standard) e la previsione teorica del momento di dipolo elettronico da’ un valore di 5x10-25 e.cm, superiore a quello del caso Standard. Ma dal momento che il valore ottenuto dalla collaborazione ACME e’ di molto inferiore a quello teorico previsto dalla Super-simmetria (|u| < 8.7×10−29 e.cm al 90% di confidenza) questo sembra indicare l’assenza di particelle Super-simmetriche in Natura. Lo scarto e’ estremamente piccolo anche se significativo. Se l’elettrone avesse le dimensioni del nostro sistema solare, la differenza da una sfera perfetta non supererebbe lo spessore di un capello. La misura del dipolo dell’elettrone e’ stata effettuata utilizzando il concetto di spin degli elettroni. Cosi come un uovo fatto ruotare intorno ad un suo asse barcollera’ a causa della sua forma oblunga mentre una palla di biliardo no (essendo una sfera quasi perfetta) se l’elettrone quantistico non e’ perfettamente sferico oscillera’ intorno al suo asse di spin. I ricercatori dell’ACME con il loro esperimento sono andati alla ricerca di questi barcollamenti degli elettroni utilizzando delle molecole di monossido di Torio molto pesanti.

In base ai risultati ottenuti dal team del professore De Mille possiamo dunque dire che la teoria super-simmetrica e’ morta? Non ancora anche se in molti lo credono visti gli ultimi risultati dell’LHC del CERN. Ad esclusione dell’ultimo tassello mancante del modello standard, il bosone di Higgs, finora non sono stati trovati segnali di nuove particelle. Ed e’ altamente improbabile dopo questo risultato del dipolo elettrico dell’elettrone che possa emergere qualche nuova particella nel dominio dei TeV (teraelettronvolt 1012 eV). Di sicuro i fisici che studiano il dipolo degli elettroni continueranno a fare di tutto per spingere il limite della loro misura sempre piu’ basso, nella speranza che un segnale venga infine trovato. Per questo motivo la comunita’ dei fisici e’ in trepidante attesa dei risultati della prossima sessione di collisioni del LHC, prevista per il 2014 quando l’acceleratore arrivera’ ad energie mai raggiunte prima. Non ci resta che aspettare per capire se davvero la teoria della Super-simmetria anche se matematicamente elegante non e’ quella scelta dalla Natura.

Articolo su arxiv: http://arxiv.org/abs/1310.7534

http://www.wikio.it