In questo post tratteremo un tema di cui oggi si parla tanto: la resilienza. Si tratta di un termine che ritroviamo in diversi campi applicativi, dall’ingegneria all’informatica, dalla psicologia alla biologia, dalla fisica alla medicina.
Il termine resilienza deriva dal latino “resalio”, iterativo del verbo “salio”, che in una delle sue accezioni originali indicava l’azione di risalire sulla barca capovolta dalle onde del mare. Tradizionalmente la resilienza è stata legata agli studi di ingegneria, nello specifico alla metallurgia, dove tale termine indica la capacità di un metallo a conservare la propria struttura o di riacquistare la forma originaria dopo essere stato sottoposto a schiacciamento o deformazione. Nel recente passato il concetto di resilienza è stato approfondito anche in ambito psicologico. Nello specifico, per la psicologia Wikipedia riporta:
La resilienza è la capacità di far fronte in maniera positiva agli eventi traumatici, di riorganizzare positivamente la propria vita dinanzi alle difficoltà. È la capacità di ricostruirsi restando sensibili alle opportunità positive che la vita offre, senza perdere la propria umanità. Persone resilienti sono coloro che immerse in circostanze avverse riescono, nonostante tutto e talvolta contro ogni previsione, a fronteggiare efficacemente le contrarietà, a dare nuovo slancio alla propria esistenza e perfino a raggiungere mete importanti.
E dalla psicologia al management il passo e’ breve. Un'azienda è un'attività organizzata attorno a risorse umane cooperanti e strutturate per il raggiungimento di un obiettivo economico, che interagisce con l’ambiente circostante. Le persone quindi assumono un ruolo centrale, come anche la loro rete di relazioni sia all’interno che all’esterno dell’azienda.
Pertanto se l'azienda è un'entità costituita da molti individui, i processi relativi alla resilienza potranno esserle applicati così come si applicano agli individui. Un'azienda resiliente sarà in grado di recepire le minacce sia interne che esterne e trasformarle in opportunità di esperienza e di crescita.
Aristotele e in seguito la teoria della complessita’ sostengono che "il tutto è più della somma delle parti" così un'organizzazione resiliente, è composta da individui resilienti che :
- si confrontano,
- si scambiano idee ed opinioni,
- costruiscono sinergie,
- modificano la loro organizzazione,
il tutto in un'azione simultanea convergente verso un obiettivo comune e condiviso.
L'azione risulta essere più efficace e potenziata rispetto alla semplice somma delle azioni individuali dei singoli.
Darwin ci ha insegnato che a sopravvivere non sono solo gli animali più forti, ma anche quelli più reattivi, pronti e sensibili al cambiamento.
La maggior parte di noi, infatti crede che per far fronte alle avversita’ e alle sollecitazioni della vita bisogna essere forti, avere coraggio. Per resistere un sistema va irrobustito in modo da assorbire le sollecitazioni prevedibili. Ma tutto cio’ si e’ dimostrato non vero. Le strutture piu’ robuste ai rischi prevedibili si sono dimostrate essere le piu’ fragili di fronte all’imprevisto, ai rischi non previsti. Non a caso John Doyle un ricercatore di reti complesse del Caltech Institute ha coniato il termine “robusto ma fragile” per questi sistemi. Pensate ad un aereo. Si tratta di un sistema che resiste alla maggior parte dei rischi prevedibili tanto e’ vero che il numero di incidenti e’ molto basso se rapportato a quello delle autovetture. Ma cosa succede di fronte all’imprevisto? Il piu' delle volte il disastro. Il sistema mostra tutta la sua fragilita’. Solo grazie alla morte di altre centinaia di persone avremo imparato qualche cosa di nuovo e in tal modo aumentata la sicurezza dei passeggeri. Ma come mai il numero di incidenti aerei e’ cosi basso se si tratta di un sistema robusto ma fragile? Semplicemente perche’ gli eventi imprevisti sono molto rari, sono i cosiddetti cigni neri di Taleb, quelli che popolano l’estrema coda della distribuzione. Gli eventi prevedibili invece seguono una distribuzione quasi Gaussiana e vivono lontani dalle code. Questo e’ quello che piu’ o meno raccontano i diversi libri e blog sulla resilienza. Ma da un punto di vista scientifico cosa significa dire che un sistema complesso e’ resiliente?
Per poter comprendere tale proprieta’ e’ necessario introdurre il concetto di sistema multistato e di bacino di attrazione.
Per fare cio’ utilizziamo un pendolo magnetico come quello rappresentato di seguito. Abbiamo una pallina metallica attaccata ad un filo libera di oscillare nello spazio con un disco alla sua base e tre magneti fissati ai vertici di un triangolo equilatero. E’ chiaro che una volta messa in movimento la pallina (nell’ipotesi in cui la resistenza dell’aria sia trascurabile) finira’ la sua corsa su uno dei tre magneti che l'avra' attirata grazie alla forza magnetica. Ma su quale magnete finira’ la sua corsa? Dipende dal punto di partenza del pendolo. Senza ricorrere alla matematica, e’ abbastanza intuitivo rendersi conto che se il pendolo parte in un punto (x,y) del piano vicino ad un magnete rispetto agli altri due con molta probabilita’ si blocchera' su quest’ultimo. Se parte dal centro essendo i tre magneti disposti alla stessa distanza dal centro la pallina non si muovera’ e cosi via.
Da un punto di vista matematico il comportamento di questo pendolo puo’ essere descritto tramite una superficie con tre buchi in corrispondenza dei magneti [si tratta della cosiddetta superficie di potenziale V(x,y)]. Se pensiamo ad una pallina (il nostro pendolo) poggiata su questa superficie a seconda della sua posizione di partenza cadra’ in uno dei tre pozzi che rappresentano i tre stati (multistati) stabili del sistema.
L’insieme di tutti i punti del piano che portano il pendolo sullo stesso magnete (stato stabile) si chiama bacino di attrazione. In questo caso possiamo giustamente pensare che ci saranno tre bacini di attrazione con dei confini ben distinti. Ma nella realta’ non e’ cosi. Nell’ipotesi di colorare i tre magneti col blue, giallo e rosso questo sara’ l’immagine che si presentera’ ai nostri occhi. Che dire? Bellissima.
Tre regioni di forma quasi triangolare con un colore ben definito con intorno un miscuglio dei tre colori come in un caledoiscopico disegno astratto. Questo significa che, se per esempio, il pendolo parte da un punto (x,y) del piano situato nella regione blue esso finira’ con l’essere attratto dal magnete identificato con questo colore. Se parte da una regione di colore rosso esso verra’ attratto dal magnete identificato dal colore rosso e cosi di seguito. Ma cosa succede se lo facciamo partire ai confini tra regioni di diverso colore? Si dimostra in modo rigoroso che questo spazio e’ frattale con strutture ripetitive alle diverse scale. Questo significa che se ad una certa scala di ingrandimento il pendolo sembra partire dalla zona di confine tra due colori, ad una scala piu’ spinta rivedremo comparire di nuovo i tre colori come mostrato nella figura sottostante. Quindi il pendolo non potra’ atterrare su nessuno dei tre magneti e sara’ destinato per l’eternita’ a seguire una traiettoria caotica nel senso che non ritornera' mai sui suoi passi.
Adesso che abbiamo chiarito il concetto di stato stabile, bacino di attrazione e sistema multi-stato possiamo finalmente parlare di resilienza.
La misura della stabilita’ di un sistema ad assorbire perturbazioni esterne senza essere spinto in un bacino di attrazione alternativo e’ molto importante. Per tale misura Holling nel 1973 suggeri’ il termine “resilienza”. Ma nella pratica come e’ possibile misurare la resilienza di un sistema? In genere lo spostamento verso un bacino di attrazione alternativo e’ invisibile nel senso che non ci sono effetti apparenti sullo stato del sistema quando questo si approssima ad un cosiddetto punto critico prima di precipitare nel nuovo stato a cui e’ sotteso un diverso bacino di attrazione. La perdita di resilienza avviene se il bacino di attrazione dello stato di equilibrio presente si riduce facendo aumentare la probabilita’ di portare il sistema in un nuovo bacino di attrazione in seguito a qualche evento stocastico. Quindi c’e’ la necessita’ di trovare degli indicatori indiretti che possano essere misurati direttamente. Al momento si sa che le due caratteristiche principali di sistemi che possono subire transizioni critiche sono: l’eterogeneita’ dei componenti e la loro connettivita’. Sistemi in cui le diverse componenti differiscono tra loro e non sono tutte inter-collegate tra loro (bassa connettivita’) tendono ad essere adattativi nel senso che si adattano al cambiamento in modo graduale. Al contrario i sistemi fortemente connessi e omogenei le “perdite” locali tendono ad essere riparate dai nodi vicini fino a che non si raggiunge un livello critico e il sistema collassa.
Questa situazione implica una continua lotta tra una resilienza locale e sistemica. Una forte connettivita’ promuove un'elevata resilienza locale ma a lungo andare il sistema puo’ raggiungere un punto critico dove la perturbazione locale puo’ generare un effetto domino che innesca una transizione sistemica. In tali sistemi (come barriere coralline e banche) il ripetuto recupero in seguito a piccole perturbazioni puo’ far pensare ad un sistema resiliente mascherando cosi l’avvicinamento ad un punto critico. Le barriere coralline, per esempio, prima del collasso subito nel 1980 a causa di una malattia dei ricci di mare erano ritenute sistemi altamente resilienti in quanto fino ad allora avevano sempre assorbito senza gravi danni le tempeste oceaniche e altre perturbazioni locali. In generale gli stessi prerequisiti che permettono il recupero da danneggiamenti locali possono portare un sistema ad un collasso su larga scala. Ma torniamo adesso ai possibili indicatori. Una linea di lavoro particolarmente attiva nell’ambito ecologico e' arrivata alla scoperta che in prossimita’ di un punto critico la velocita’ con cui il sistema recupera lo stato iniziale (in seguito ad una perturbazione) e’ determinante per stabilirne la sua resilienza. Piu’ la velocita’ di recupero diventa bassa (cioe’ il sistema ritorna al suo stato iniziale molto lentamente) e piu’ aumenta la probabilita’ che il sistema si trovi in prossimita' di una transizione critica (questo fenomeno in inglese e’ conosciuto come critical slowing down). Nell’immagine di seguito i bacini di attrazione vengono rappresentati come valli. Un sistema resiliente e’ uno che ha delle valli significativamente profonde da cui non e’ facile far uscire un'eventuale pallina (che nel nostro caso rappresenta lo stato del sistema) con una perturbazione stocastica. Il lento recupero del sistema in una situazione di bassa resilienza e’ dovuto alla bassa pendenza del bacino di attrazione (B) rispetto all’elevata pendenza del caso resiliente (A).
Un sistema nelle vicinanze di un punto critico diventa sensibile alle condizioni iniziali e una piccola spinta puo’ provocare un grande cambiamento. Si tratta del cosiddetto principio di Pareto 20/80. Una variazione del 20% nelle condizioni inziali comporta una variazione del 80% sull’uscita del sistema. La stessa legge e’ conosciuta anche come "effetto farfalla". In un sistema caotico, cioe’ un sistema con dipendenza sensibile dalle condizioni iniziali, un battito di ali a New York puo’ generare una tempesta a Rio. Il lento recupero dello stato iniziale si accompagna anche al cosiddetto effetto memoria e all'aumentata varianza come mostrato in G,H e D,F. La varianza e’ una misura dell’ampiezza della distribuzione mentre l’effetto memoria e’ legato alla cosiddetta autocorrelazione cioe’ alla correlazione tra lo stato del sistema al tempo t e al tempo t+1 (vedi G e H). I sistemi con bassa resilienza mostrano un recupero dalle perturbazioni molto lento, elevata varianza e un effetto memoria spinto.
In vicinanza di un punto critico (spesso anche chiamato un punto di biforcazione catastrofico) e' possibile osservare un altro effetto: quello dello “sfarfallamento” o flickering come si dice in inglese. Questo accade se la perturbazione e’ forte abbastanza da muovere il sistema avanti e indietro tra due bacini di attrazione alternativi una volta che il sistema entra nella regione bi-stabile (vedi B e D nell'immagine sottostante). Ad un certo punto il sistema puo’ spostarsi definitivamente in uno dei due stati e stabilizzarsi in esso (vedi C ed E). Questo tipo di segnale e’ stato rilevato per esempio nei cambi climatici improvvisi e prima di attacchi epilettici. Chiaramente in presenza di flickering la distribuzione degli stati del sistema subisce un aumento della varianza, code pronunciate e bi-modalita’ (che riflette i due regimi alternativi – vedi B e C).
.
Nell’immagine di seguito e’ ancora piu’ chiaro quello che avviene in prossimita di un punto di biforcazione (transizione critica). Quando il sistema e’ lontano dal punto di biforcazione (critical point) la buca associata al bacino di attrazione e’ profonda e qualsiasi perturbazione stocastica e’ velocemente recuperata (la pallina ricade velocemente verso il punto minimo della buca). Man mano che il sistema si avvicina al punto critico, la profondita’ della buca associata al bacino di attrazione diventa sempre meno profonda e questo comporta un recupero piu’ lento (pareti meno ripide). Nel momento in cui il sistema arriva nel punto di transizione la buca scompare del tutto e qualsiasi perturbazione portera’ il sistema in un nuovo stato cioe’ in un nuovo bacino di attrazione.
Sebbene la ricerca sugli indicatori empirici di robustezza e resilienza sia solo agli inizi esiste gia’ un elevato numero di modelli e di pubblicazioni specifiche. La maggiore sfida rimane lo sviluppo di procedure robuste per stabilire in anticipo le transizioni critiche. Uno dei problemi principali e’ che i metodi richiedono un’alta risoluzione temporale. Quindi bisogna studiare anche altri indicatori non legati necessariamente alle serie temporali. In molti sistemi per esempio, governati da perturbazioni locali, in prossimita’ di una transizione critica svaniscono le leggi di potenza presenti in un ampio range del parametro di controllo. Piu’ volte su questo blog abbiamo parlato di legge di potenza e della sua ubiquita’ in natura. Non potevano quindi mancare anche nell’ambito della resilienza. Alcuni ecologisti infatti, hanno stabilito che la distribuzione della dimensione delle macchie di vegetazione per un ecosistema in regioni aride del mediterraneo devia da una legge di potenza prima di una transizione critica (desertificazione).
Qui di seguito un esempio di legge di potenza per questi ecosistemi. Sull’asse y viene riportato il numero di macchie di vegetazione di dimensione S e sull’asse x la dimensione S stessa. Il grafico e’ bi-logaritmico e quindi la legge di potenza appare come una retta.
Questa distribuzione ci dice che in questi ecosistemi esistono moltissime macchie di vegetazione di piccole dimensioni e ogni tanto qua e la si trovano delle macchie di dimensioni molto grandi. Cosa succede se cambia il clima e il sistema diventa sempre piu’ arido? La distribuzione delle macchie di vegetazione comincera’ a seguire una distribuzione che in scala bi-logaritmica si allontanera’ sempre piu’ da una retta come mostrato sotto.
Questo significa che se riportiamo su un grafico la percentuale di suolo coperto dalla vegetazione e sull’asse x un parametro che indichiamo con b inversamente proporzionale all’aridita’ avremo un andamento ad iperbole. Una volta che il valore di b si avvicina a 0.3 la quantita’ di vegetazione precipitera' velocemente verso lo zero e non ci sara' piu’ modo di tornare indietro. Il deserto avra’ conquistato altri metri.
Altri studiosi hanno trovato che i sistemi complessi con strutture regolari autorganizzate in prossimita’ di una transizione critica seguono una sequenza prevedibile di pattern spaziali. Qui di seguito un grafico che riporta la risposta in termini di quantita’ media di vegetazione per un modello di ambiente semi-arido all’aumentare della siccita’. La linea continua rappresenta la densita’ di vegetazione all’equilibrio. Le tre immagini piccole al di sopra della curva rappresentano le mappe spaziali della vegetazione con quest’ultima rappresentata dal colore nero e il suolo libero dal colore chiaro. Come il sistema si avvicina alla transizione critica (il punto di biforcazione) la natura del pattern cambia da una forma labirintica ad una punteggiata.
Ritorniamo di nuovo al concetto di “robusto ma fragile”. Un sistema con scarsa resistenza (poco robusto) e alta resilienza (non fragile) in seguito ad una perturbazione si allontana dallo stato di equilibrio per poi ritornarci velocemente. Quello con bassa resilienza invece non si allontana molto dallo stato di equilibrio (robusto) e impiega molto piu’ tempo per ritornare al punto di partenza sempre che non entri in un regime catastrofico da cui non potra’ piu’ uscire cambiando cosi completamente stato.
Sistema poco robusto ma resiliente
Sistema robusto ma poco resiliente
Data l’importanza delle transizioni critiche (effetto soglia) e la difficolta’ di prevederle in anticipo come puo’ un sistema mantenere la sua resilienza? Una ricetta universale purtroppo non esiste. Dagli studi effettuati in campi diversi (dalla fisica al management, dalla chimica alla psicologia) sono emerse comunque alcune regole generali:
· Mantenere un elevato grado di diversita’ soprattutto nella risposta
· Cercare di mantenere una stuttura modulare evitando sovra-connessioni
· Rispondere rapidamente ai cambiamenti
· Garantire l’apertura del sistema nel senso di permettere lo scambio continuo con l’ambiente circostante
· Incentivare continuamente l’innovazione e la creativita’
· Elevato capitale sociale (reti di relazioni)
· Leadership generativa
Seguendo il concetto di “robusto ma fragile” bisogna ovviamente fare attenzione a non confondere la resilienza con la resistenza al cambiamento. Al contrario come visto un sistema nel tentativo di evitare cambiamenti e turbative riduce la sua resilienza che va intesa come capacita' di trasformazione e adattabilita’. Se un cambiamento peggiorativo e’ inevitabile l’unica possibilita’ per sopravvivere e’ la trasformazione del sistema o di sue parti in alcune piu’ adatte alla nuova condizione. La resilienza in breve consiste nell’imparare a cambiare per non subire il cambiamento. I sistemi resilienti sono quelli capaci di mettersi al sicuro nel momento in cui stanno per fallire e non quelli che cercano di stare al sicuro dai fallimenti. I cigni neri di Taleb non si possono evitare ed e’ difficile prevederli. Ma questo non significa che non dobbiamo prenderne atto ed essere preparati alla catastrofe. Un mondo di tipo Gaussiano purtroppo non esiste. La natura gioca con le code delle distribuzioni, le leggi di potenza e la geometria frattale. E di questo dobbiamo esserne consapevoli.