Visualizzazione post con etichetta teoria del caos. Mostra tutti i post
Visualizzazione post con etichetta teoria del caos. Mostra tutti i post

giovedì 6 agosto 2015

Cambiare per non subire il cambiamento

 

In questo post tratteremo un tema di cui oggi si parla tanto: la resilienza. Si tratta di un termine che ritroviamo in diversi campi applicativi, dall’ingegneria all’informatica, dalla psicologia alla biologia, dalla fisica alla medicina.

Il termine resilienza deriva dal latino “resalio”, iterativo del verbo “salio”, che in una delle sue accezioni originali indicava l’azione di risalire sulla barca capovolta dalle onde del mare. Tradizionalmente la resilienza è stata legata agli studi di ingegneria, nello specifico alla metallurgia, dove tale termine indica la capacità di un metallo a conservare la propria struttura o di riacquistare la forma originaria dopo essere stato sottoposto a schiacciamento o deformazione. Nel recente passato il concetto di resilienza è stato approfondito anche in ambito psicologico. Nello specifico, per la psicologia Wikipedia riporta:

La resilienza è la capacità di far fronte in maniera positiva agli eventi traumatici, di riorganizzare positivamente la propria vita dinanzi alle difficoltà. È la capacità di ricostruirsi restando sensibili alle opportunità positive che la vita offre, senza perdere la propria umanità. Persone resilienti sono coloro che immerse in circostanze avverse riescono, nonostante tutto e talvolta contro ogni previsione, a fronteggiare efficacemente le contrarietà, a dare nuovo slancio alla propria esistenza e perfino a raggiungere mete importanti.

E dalla psicologia al management il passo e’ breve. Un'azienda è un'attività organizzata attorno a risorse umane cooperanti e strutturate per il raggiungimento di un obiettivo economico, che interagisce con l’ambiente circostante. Le persone quindi assumono un ruolo centrale, come anche la loro rete di relazioni sia all’interno che all’esterno dell’azienda.

Pertanto se l'azienda  è un'entità costituita da molti individui, i processi relativi alla resilienza potranno esserle applicati così come  si applicano agli individui. Un'azienda resiliente sarà  in grado di recepire le minacce sia interne che esterne e trasformarle in opportunità di esperienza e di crescita.   

Aristotele e in seguito la teoria della complessita’ sostengono che "il tutto è più della somma delle parti"  così un'organizzazione resiliente, è composta da individui resilienti   che :

- si confrontano,

- si scambiano idee ed opinioni, 

- costruiscono sinergie,

- modificano la loro organizzazione,

il tutto in un'azione simultanea convergente verso un obiettivo comune e condiviso.

L'azione risulta essere più efficace e potenziata rispetto alla semplice somma delle azioni individuali dei singoli.

Darwin ci ha insegnato che a sopravvivere non sono solo gli animali più forti, ma anche quelli più reattivi, pronti e sensibili al cambiamento.   

La maggior parte di noi, infatti crede che per far fronte alle avversita’ e alle sollecitazioni della vita bisogna essere forti, avere coraggio. Per resistere un sistema va irrobustito in modo da assorbire le sollecitazioni prevedibili. Ma tutto cio’ si e’ dimostrato non vero. Le strutture piu’ robuste ai rischi prevedibili si sono dimostrate essere le piu’ fragili di fronte all’imprevisto, ai rischi non previsti. Non a caso John Doyle un ricercatore di reti complesse del Caltech Institute ha coniato il termine “robusto ma fragile” per questi sistemi. Pensate ad un aereo. Si tratta di un sistema che resiste alla maggior parte dei rischi prevedibili tanto e’ vero che il numero di incidenti e’ molto basso se rapportato a quello delle autovetture. Ma cosa succede di fronte all’imprevisto? Il piu' delle volte il disastro. Il sistema mostra tutta la sua fragilita’. Solo grazie alla morte di altre centinaia di persone avremo imparato qualche cosa di nuovo e in tal modo aumentata la sicurezza dei passeggeri. Ma come mai il numero di incidenti aerei e’ cosi basso se si tratta di un sistema robusto ma fragile? Semplicemente perche’ gli eventi imprevisti sono molto rari, sono i cosiddetti cigni neri di Taleb, quelli che popolano l’estrema coda della distribuzione. Gli eventi prevedibili invece seguono una distribuzione quasi Gaussiana e vivono lontani dalle code. Questo e’ quello che piu’ o meno raccontano i diversi libri e blog sulla resilienza. Ma da un punto di vista scientifico cosa significa dire che un sistema complesso e’ resiliente?

Per poter comprendere tale proprieta’ e’ necessario introdurre il concetto di sistema multistato e di bacino di attrazione.

Per fare cio’ utilizziamo un pendolo magnetico come quello rappresentato di seguito. Abbiamo una pallina metallica attaccata ad un filo libera di oscillare nello spazio con un disco alla sua base e tre magneti fissati ai vertici di un triangolo equilatero. E’ chiaro che una volta messa in movimento la pallina (nell’ipotesi in cui la resistenza dell’aria sia trascurabile) finira’ la sua corsa su uno dei tre magneti che l'avra' attirata grazie alla forza magnetica. Ma su quale magnete finira’ la sua corsa? Dipende dal punto di partenza del pendolo. Senza ricorrere alla matematica, e’ abbastanza intuitivo rendersi conto che se il pendolo parte in un punto (x,y) del piano vicino ad un magnete rispetto agli altri due con molta probabilita’ si blocchera' su quest’ultimo. Se parte dal centro essendo i tre magneti disposti alla stessa distanza dal centro la pallina non si muovera’ e cosi via.

Da un punto di vista matematico il comportamento di questo pendolo puo’ essere descritto tramite una superficie con tre buchi in corrispondenza dei magneti [si tratta della cosiddetta superficie di potenziale V(x,y)]. Se pensiamo ad una pallina (il nostro pendolo) poggiata su questa superficie a seconda della sua posizione di partenza cadra’ in uno dei tre pozzi che rappresentano i tre stati (multistati) stabili del sistema.

L’insieme di tutti i punti del piano che portano il pendolo sullo stesso magnete (stato stabile) si chiama bacino di attrazione. In questo caso possiamo giustamente pensare che ci saranno tre bacini di attrazione con dei confini ben distinti. Ma nella realta’ non e’ cosi. Nell’ipotesi di colorare i tre magneti col blue, giallo e rosso questo sara’ l’immagine che si presentera’ ai nostri occhi. Che dire? Bellissima.

Tre regioni di forma quasi triangolare con un colore ben definito con intorno un miscuglio dei tre colori come in un caledoiscopico disegno astratto. Questo significa che, se per esempio, il pendolo parte da un punto (x,y) del piano situato nella regione blue esso finira’ con l’essere attratto dal magnete identificato con questo colore. Se parte da una regione di colore rosso esso verra’ attratto dal magnete identificato dal colore rosso e cosi di seguito. Ma cosa succede se lo facciamo partire ai confini tra regioni di diverso colore? Si dimostra in modo rigoroso che questo spazio e’ frattale con strutture ripetitive alle diverse scale. Questo significa che se ad una certa scala di ingrandimento il pendolo sembra partire dalla zona di confine tra due colori, ad una scala piu’ spinta rivedremo comparire di nuovo i tre colori come mostrato nella figura sottostante. Quindi il pendolo non potra’ atterrare su nessuno dei tre magneti e sara’ destinato per l’eternita’ a seguire una traiettoria caotica nel senso che non ritornera' mai sui suoi passi.

Adesso che abbiamo chiarito il concetto di stato stabile, bacino di attrazione e sistema multi-stato possiamo finalmente parlare di resilienza.

La misura della stabilita’ di un sistema ad assorbire perturbazioni esterne senza essere spinto in un bacino di attrazione alternativo e’ molto importante. Per tale misura Holling nel 1973 suggeri’ il termine “resilienza”. Ma nella pratica come e’ possibile misurare la resilienza di un sistema? In genere lo spostamento verso un bacino di attrazione alternativo e’ invisibile nel senso che non ci sono effetti apparenti sullo stato del sistema quando questo si approssima ad un cosiddetto punto critico prima di precipitare nel nuovo stato a cui e’ sotteso un diverso bacino di attrazione. La perdita di resilienza avviene se il bacino di attrazione dello stato di equilibrio presente si riduce facendo aumentare la probabilita’ di portare il sistema in un nuovo bacino di attrazione in seguito a qualche evento stocastico. Quindi c’e’ la necessita’ di trovare degli indicatori indiretti che possano essere misurati direttamente. Al momento si sa che le due caratteristiche principali di sistemi che possono subire transizioni critiche sono: l’eterogeneita’ dei componenti e la loro connettivita’. Sistemi in cui le diverse componenti differiscono tra loro e non sono tutte inter-collegate tra loro (bassa connettivita’) tendono ad essere adattativi nel senso che si adattano al cambiamento in modo graduale. Al contrario i sistemi fortemente connessi e omogenei le “perdite” locali tendono ad essere riparate dai nodi vicini fino a che non si raggiunge un livello critico e il sistema collassa.

Questa situazione implica una continua lotta tra una resilienza locale e sistemica. Una forte connettivita’ promuove un'elevata resilienza locale ma a lungo andare il sistema puo’ raggiungere un punto critico dove la perturbazione locale puo’ generare un effetto domino che innesca una transizione sistemica. In tali sistemi (come barriere coralline e banche) il ripetuto recupero in seguito a piccole perturbazioni puo’ far pensare ad un sistema resiliente mascherando cosi l’avvicinamento ad un punto critico. Le barriere coralline, per esempio, prima del collasso subito nel 1980 a causa di una malattia dei ricci di mare erano ritenute sistemi altamente resilienti in quanto fino ad allora avevano sempre assorbito senza gravi danni le tempeste oceaniche e altre perturbazioni locali. In generale gli stessi prerequisiti che permettono il recupero da danneggiamenti locali possono portare un sistema ad un collasso su larga scala. Ma torniamo adesso ai possibili indicatori. Una linea di lavoro particolarmente attiva nell’ambito ecologico e' arrivata alla scoperta che in prossimita’ di un punto critico la velocita’ con cui il sistema recupera lo stato iniziale (in seguito ad una perturbazione) e’ determinante per stabilirne la sua resilienza. Piu’ la velocita’ di recupero diventa bassa (cioe’ il sistema ritorna al suo stato iniziale molto lentamente) e piu’ aumenta la probabilita’ che il sistema si trovi in prossimita' di una transizione critica (questo fenomeno in inglese e’ conosciuto come critical slowing down). Nell’immagine di seguito i bacini di attrazione vengono rappresentati come valli. Un sistema resiliente e’ uno che ha delle valli significativamente profonde da cui non e’ facile far uscire un'eventuale pallina (che nel nostro caso rappresenta lo stato del sistema) con una perturbazione stocastica. Il lento recupero del sistema in una situazione di bassa resilienza e’ dovuto alla bassa pendenza del bacino di attrazione (B) rispetto all’elevata pendenza del caso resiliente (A).

Un sistema nelle vicinanze di un punto critico diventa sensibile alle condizioni iniziali e una piccola spinta puo’ provocare un grande cambiamento. Si tratta del cosiddetto principio di Pareto 20/80. Una variazione del 20% nelle condizioni inziali comporta una variazione del 80% sull’uscita del sistema. La stessa legge e’ conosciuta anche come "effetto farfalla". In un sistema caotico, cioe’ un sistema con dipendenza sensibile dalle condizioni iniziali, un battito di ali a New York puo’ generare una tempesta a Rio. Il lento recupero dello stato iniziale si accompagna anche al cosiddetto effetto memoria e all'aumentata varianza come mostrato in G,H e D,F. La varianza e’ una misura dell’ampiezza della distribuzione mentre l’effetto memoria e’ legato alla cosiddetta autocorrelazione cioe’ alla correlazione tra lo stato del sistema al tempo t e al tempo t+1 (vedi G e H). I sistemi con bassa resilienza mostrano un recupero dalle perturbazioni molto lento, elevata varianza e un effetto memoria spinto.

In vicinanza di un punto critico (spesso anche chiamato un punto di biforcazione catastrofico) e' possibile osservare un altro effetto: quello dello “sfarfallamento” o flickering come si dice in inglese. Questo accade se la perturbazione e’ forte abbastanza da muovere il sistema avanti e indietro tra due bacini di attrazione alternativi una volta che il sistema entra nella regione bi-stabile (vedi B e D nell'immagine sottostante). Ad un certo punto il sistema puo’ spostarsi definitivamente in uno dei due stati e stabilizzarsi in esso (vedi C ed E). Questo tipo di segnale e’ stato rilevato per esempio nei cambi climatici improvvisi e prima di attacchi epilettici. Chiaramente in presenza di flickering la distribuzione degli stati del sistema subisce un aumento della varianza, code pronunciate e bi-modalita’ (che riflette i due regimi alternativi – vedi B e C).

.

Nell’immagine di seguito e’ ancora piu’ chiaro quello che avviene in prossimita di un punto di biforcazione (transizione critica). Quando il sistema e’ lontano dal punto di biforcazione (critical point) la buca associata al bacino di attrazione e’ profonda e qualsiasi perturbazione stocastica e’ velocemente recuperata (la pallina ricade velocemente verso il punto minimo della buca). Man mano che il sistema si avvicina al punto critico, la profondita’ della buca associata al bacino di attrazione diventa sempre meno profonda e questo comporta un recupero piu’ lento (pareti meno ripide). Nel momento in cui il sistema arriva nel punto di transizione la buca scompare del tutto e qualsiasi perturbazione portera’ il sistema in un nuovo stato cioe’ in un nuovo bacino di attrazione.

Sebbene la ricerca sugli indicatori empirici di robustezza e resilienza sia solo agli inizi esiste gia’ un elevato numero di modelli e di pubblicazioni specifiche. La maggiore sfida rimane lo sviluppo di procedure robuste per stabilire in anticipo le transizioni critiche. Uno dei problemi principali e’ che i metodi richiedono un’alta risoluzione temporale. Quindi bisogna studiare anche altri indicatori non legati necessariamente alle serie temporali. In molti sistemi per esempio, governati da perturbazioni locali, in prossimita’ di una transizione critica svaniscono le leggi di potenza presenti in un ampio range del parametro di controllo. Piu’ volte su questo blog abbiamo parlato di legge di potenza e della sua ubiquita’ in natura. Non potevano quindi mancare anche nell’ambito della resilienza. Alcuni ecologisti infatti, hanno stabilito che la distribuzione della dimensione delle macchie di vegetazione per un ecosistema in regioni aride del mediterraneo devia da una legge di potenza prima di una transizione critica (desertificazione).

Qui di seguito un esempio di legge di potenza  per questi ecosistemi. Sull’asse y viene riportato il numero di macchie di vegetazione di dimensione S e sull’asse x la dimensione S stessa. Il grafico e’ bi-logaritmico e quindi la legge di potenza appare come una retta.

Questa distribuzione ci dice che in questi ecosistemi esistono moltissime macchie di vegetazione di piccole dimensioni e ogni tanto qua e la si trovano delle macchie di dimensioni molto grandi. Cosa succede se cambia il clima e il sistema diventa sempre piu’ arido? La distribuzione delle macchie di vegetazione comincera’ a seguire una distribuzione che in scala bi-logaritmica si allontanera’ sempre piu’ da una retta come mostrato sotto.

Questo significa che se riportiamo su un grafico la percentuale di suolo coperto dalla vegetazione e sull’asse x un parametro che indichiamo con b inversamente proporzionale all’aridita’ avremo un andamento ad iperbole. Una volta che il valore di b si avvicina a 0.3 la quantita’ di vegetazione precipitera' velocemente verso lo zero e non ci sara' piu’ modo di tornare indietro. Il deserto avra’ conquistato altri metri.

Altri studiosi hanno trovato che i sistemi complessi con strutture regolari autorganizzate in prossimita’ di una transizione critica seguono una sequenza prevedibile di pattern spaziali. Qui di seguito un grafico che riporta la risposta in termini di quantita’ media di vegetazione per un modello di ambiente semi-arido all’aumentare della siccita’. La linea continua rappresenta la densita’ di vegetazione all’equilibrio. Le tre immagini piccole al di sopra della curva rappresentano le mappe spaziali della vegetazione con quest’ultima rappresentata dal colore nero e il suolo libero dal colore chiaro. Come il sistema si avvicina alla transizione critica (il punto di biforcazione) la natura del pattern cambia da una forma labirintica ad una punteggiata.

Ritorniamo di nuovo al concetto di “robusto ma fragile”. Un sistema con scarsa resistenza (poco robusto) e alta resilienza (non fragile) in seguito ad una perturbazione si allontana dallo stato di equilibrio per poi ritornarci velocemente. Quello con bassa resilienza invece non si allontana molto dallo stato di equilibrio (robusto) e impiega molto piu’ tempo per ritornare al punto di partenza sempre che non entri in un regime catastrofico da cui non potra’ piu’ uscire cambiando cosi completamente stato.

Sistema poco robusto ma resiliente

Sistema robusto ma poco resiliente

 

Data l’importanza delle transizioni critiche (effetto soglia) e la difficolta’ di prevederle in anticipo come puo’ un sistema mantenere la sua resilienza? Una ricetta universale purtroppo non esiste. Dagli studi effettuati in campi diversi (dalla fisica al management, dalla chimica alla psicologia) sono emerse comunque alcune regole generali:

· Mantenere un elevato grado di diversita’ soprattutto nella risposta

· Cercare di mantenere una stuttura modulare evitando sovra-connessioni

· Rispondere rapidamente ai cambiamenti

· Garantire l’apertura del sistema nel senso di permettere lo scambio continuo con l’ambiente     circostante

· Incentivare continuamente l’innovazione e la creativita’

· Elevato capitale sociale (reti di relazioni)

· Leadership generativa

Seguendo il concetto di “robusto ma fragile” bisogna ovviamente fare attenzione a non confondere la resilienza con la resistenza al cambiamento. Al contrario come visto un sistema nel tentativo di evitare cambiamenti e turbative riduce la sua resilienza che va intesa come capacita' di trasformazione e adattabilita’. Se un cambiamento peggiorativo e’ inevitabile l’unica possibilita’ per sopravvivere e’ la trasformazione del sistema o di sue parti in alcune piu’ adatte alla nuova condizione. La resilienza in breve consiste nell’imparare a cambiare per non subire il cambiamento. I sistemi resilienti sono quelli capaci di mettersi al sicuro nel momento in cui stanno per fallire e non quelli che cercano di stare al sicuro dai fallimenti. I cigni neri di Taleb non si possono evitare ed e’ difficile prevederli. Ma questo non significa che non dobbiamo prenderne atto ed essere preparati alla catastrofe. Un mondo di tipo Gaussiano purtroppo non esiste. La natura gioca con le code delle distribuzioni, le leggi di potenza e la geometria frattale. E di questo dobbiamo esserne consapevoli.

giovedì 5 settembre 2013

Sistemi complessi: adattamento, emergenza e prevedibilita’

 

Secondo il metodo scientifico tradizionale (quello di Galileo, Newton e Laplace per intenderci) per analizzare un problema bisogna isolarlo e semplificarlo per arrivare ad una formalizzazione matematica che permettera’ poi di trovare le possibili soluzioni (riduzionismo).

Una delle caratteristiche principali del riduzionismo e’ quella di cercare dei principi fisici che possano essere ricondotti ad un piccolo insieme di leggi fondamentali, una teoria finale che dovrebbe essere espressa in termini della fisica delle particelle.

E’ conoscenza comune, comunque che i sistemi viventi mostrano strutture e processi complessi, come il sistema immunitario, la mente, la rete metabolica e cosi via. La complessita’ e presente anche nel mondo inanimato come per esempio nelle strutture delle galassie. Quindi il riduzionismo contrariamente alla complessita’ cerca di spiegare tutto con un piccolo insieme di semplici leggi che dovrebbero spiegare l’esistenza dell’ordine nell’Universo. Se alla fine tutto si riduce a delle particelle elementari e poche leggi fisiche, da dove viene l’ordine (complessita’) presente nel nostro Universo? In altre parole il programma riduzionista non puo’ essere completo senza spiegare l’emergenza della complessita’.

Il riduzionismo si e’ dimostrato molto efficace per diversi problemi, come la costruzione di un palazzo, di un ponte, le automobili e i computer essendo questi dei sistemi caratterizzati da poche variabili non fortemente intercorrelate tra loro. In poiu’ questi problemi non cambiano nel tempo: la gravita’, il combustibile, le proprieta’ elettriche... sono tutte costanti nel tempo.

Ci sono due situazioni in cui questo approccio tradizionale non funziona. Una e’ quando il sistema ha molte variabili; in questo caso non e’ possibile trovare delle soluzioni a causa del tempo richiesto per l’analisi. Si possono solo applicare delle tecniche di ottimizzazione per avvicinarsi alla soluzione reale.

L’altra e’ quando il problema cambia nel tempo e quindi ogni possibile soluzione sara’ gia’ obsoleta appena trovata. In questo caso non e’ possibile fare alcuna previsione sull’evoluzione futura e le tecniche classiche diventano inadeguate.

L’impossibilita’ per molti sistemi fisici di fare delle previsioni accurate e’ stata sollevata dalla teoria del caos deterministico nei primi anni sessanta. E’ chiaro che un sistema deterministico porta a pensare ad un qualche cosa di prevedibile secondo quanto affermato da Laplace: se si conoscessero tutte le posizioni e velocita’ delle particelle presenti nell’universo, applicando le leggi di Newton, sarebbe possibile conoscere gli eventi passati e futuri del nostro universo.

In effetti ci sono diversi punti oscuri con la visione semplicistica di Laplace.

1. Anche con una descrizione completa di tutte le particelle dell’universo non saremmo capaci di fare previsioni sui vari fenomeni a diverse scale. La vita, la mente, i sogni, le emozioni l’immaginazione, l’economia, le guerre per citarne alcuni. Tutti questi fenomeni sono reali ed hanno un impatto sul mondo fisico, ma non possono essere descritti in termini di leggi delle particelle.

2. Un modello completo dell’universo per forza deve contenere il modello stesso. Questo porta ad un paradosso. Se il modello descrive l’universo e allo stesso tempo e’ parte dell’universo esso deve contenere se stesso infinite volte.

3. L’irreversibilta’ termodinamica ci ha insegnato che non e’ possibile risalire a tutti gli eventi del passato. Per esempio, se ci sono due stati che portano entrambi ad un stesso stato, una volta che siamo nell’ultimo stato non e’ piu’ possibile stabilire da quale dei due stati precedenti si e’ partiti.

4. Il determinismo non implica necessariamente la prevedibilita’. Questa e’ limitata nei sistemi caotici in quanto essi sono sensibili alle condizioni iniziali.

Nei sistemi caotici, stati iniziali molto simili possono portare a stati futuri completamente diversi tra loro. Per esempio una variabile con un valore di 1.3232323232 puo’ portare ad un valore finale di 0.3 mentre un valore iniziale di 1.3232323233 puo’ portare per esempio ad un valore finale di -3 indipendentemente dalla precisione delle nostre misure (questo comportamento puo’ essere misurato con gli esponenti di Lyapunov indicati con lambda). Questo comporta la non prevedibilita’ a lungo termine dei sistemi caotici.

Indicando con eo l’incertezza iniziale sempre presente, questa si propaga secondo la legge esponenziale riportata nella figura qui sopra dove l e’ il massimo esponente di Lyapunov. Nell’ipotesi di volere un incertezza massima minore o uguale ad 1 questo implica un tmax dato da

tmax=(1/l)ln(1/eo )

Questo significa che per quanto possa essere piccolo il tasso di crescita esponenziale l, se l>0 , per poter raddoppiare il tempo di previsione bisogna diminuire di molti ordini di grandezza l’incertezza iniziale raggiungendo inevitabilmente dei limiti invalicabili.

Un esempio classico di sistema caotico e’ quella della previsione meteo. Questa e’ limitata non perche’ la dinamica dell’atmosfera e’ sconosciuta agli scienziati ma perche’ nella dinamica dell’atmosfera e’ presente del caos a causa della dipendenza sensibile dalle condizioni iniziali. Anche se la precisione con cui riusciamo a determinare le condizioni iniziali venisse aumentata, la previsione non potrebbe essere fatta con alta confidenza per piu’ di due o tre giorni.

Un altro esempio di sistema con prevedibilita’ limitata e’ il traffico stradale. La dinamica dei veicoli e’ descritta dalla meccanica classica ma ci sono dei fattori aggiuntivi che vanno tenuti in conto che possono influenzare il movimento delle automobili (per esempio una bassa visibilita’, una strada bagnata, dei lavori in corso, un autista distratto, un autista sotto effetto dell’alcol, la presenza di pedoni etc. etc.)

E’ possibile provare a predire la futura posizione di un auto, ma questa previsione sara’ limitata nel tempo a non piu’ di un paio di minuti. Piccoli cambiamenti nella traiettoria di un veicolo possono portare a degli effetti significativi sul traffico di un ‘intera citta’. Questo e’ dovuto al numero elevato di interazioni tra ogni veicolo e il suo ambiente esterno: pedoni, semafori, pioggia etc. Queste interazioni sono alla base dei sistemi complessi.

Vediamo un attimo cosa si intende con complessita’. Etimologicamente il termine deriva dal latino plexus, che significa intrecciato. In altre parole, un sistema complesso e’ difficile da separare. Questo perche’ le interazioni tra le sue componenti sono rilevanti, visto che il futuro di ogni elemento dipende inesorabilmente dallo stato degli altri elementi.

Esempi di sistemi complessi sono ovunque: cellule, cervello, citta’, internet, mercati, colonie di insetti, ecosistemi, biosfera, popolazioni, terremoti, traffico solo per citarni alcuni. Tutti questi sistemi sono costituiti da elementi che interagiscono generando un comportamento del sistema che dipende dagli elementi stessi e dalle loro interazioni. Per esempio le cellule sono fatte di molecole; le cellule sono vive mentre le molecole no. Da dove viene quindi la vita? Questa viene dall’interazione delle molecole. Allo stesso modo il cervello e’ formato da neuroni e molecole; il cervello e’ capace di ragionare, immaginare, calcolare. Queste proprieta’ non sono presenti nei componenti (neuroni e molecole) ma sono generate dalla loro interazione. E’ proprio a causa della rilevanza delle interazioni che non e’ possibile ridurre il comportamento del sistema a quello delle sue parti. Le interazioni generano nuova informazione che non e’ presente nelle parti del sistema ma e’ essenziale per il suo comportamento.

Un classico esempio di complessita’ e’ il gioco della vita di Conway dal nome del matematico che l’ha inventato nel 1982. Esso consiste in un reticolo digitale in cui ogni cella puo’ prendere due valori: 1 (cella viva) e 0 (cella morta). Lo stato di ogni cella dipende dai suoi 8 primi vicini (N, NE, NO, S, SE, SO, E, O): se ci sono meno di due celle intorno ad una cella viva, questa muore di “solitudine”. Se ci sono piu’ di 3 celle vive, la cella centrale muore lo stesso a causa della “sovrappopolazione”. Se ci sono esattamente 2 o 3 celle vive la cella centrale rimane viva. Se intorno ad una cella morta ci sono esattamente 3 celle vive questa cambia il suo stato da morta a viva.

 

I primi vicini di ogni cella nel gioco vita.

Queste regole semplicissime riescono a produrre un comportamento di alta complessita’. Esistono certe strutture stabili che possono emergere da condizioni inziali del tutto casuali. Allo stesso modo esistono strutture oscillanti che ripetono un pattern dinamico con un ben determinato periodo.

 

Alcune iterazioni del gioco vita partendo da una struttura a croce con 12 celle vive (in nero).

Evoluzione di una colonia di batteri inizialmente composta da 4 batteri formanti un triangolo. Dopo 10 generazioni si ottiene un pattern ricorrente chiamato "semaforo”.

Cannone con gliders che si spostano verso sinistra in basso.

Altre strutture invece si muovono sul reticolo (chiamate gliders) con una velocita’ ben determinata fino a quando non incontrano qualche altra struttura con cui interagiscono. C’e’ una varieta’ di pattern dinamici sorprendente e molti devono ancora essere scoperti.

Il gioco Life e’ stato dimostrato essere anche un computer universale nel senso che puo’ compiere (anche se molto piu’ lentamente) qualsiasi calcolo che puo’ fare un altro computer come un IBM o Mac. Posizionando infatti opportunamente i cannoni di gliders e’ possibile creare dei flussi continui che interagiscono tra loro come possono fare gli impulsi di elettricità all’interno dei fili elettrici.

Con questi blocchi e’ possibile costruire dei gates logici come AND, OR e NOT. Questi gates a loro volta possono essere utilizzati per realizzare circuiti piu’ complessi. Tutti i componenti necessari per disegnare un computer sono presenti in Life come dimostrato da Conway e altri studiosi.

 

Il gate logico AND dove gli inputs sono inseriti nella prima riga dell’automa con delle specifiche condizioni iniziali e il desiderato output e’ nell’ultima riga a destra.

 

E’ possibile che questa ricchezza di strutture possa essere prevista dalle regole del gioco e dalle condizioni iniziali? La risposta e’ no. Le proprieta’ su larga scala non possono essere determinate a priori. L’unico modo per conoscere lo stato finale del sistema Life e’ quello di farlo evolvere sullo schermo di un computer.

 

Evoluzione del gioco della Vita a partire da una condizione casuale (a), dove le celle bianche sono quelle vive e le nere quelle morte. Dopo 410 passi (b), si formano alcune strutture stabili anche se ci sono ancora delle zone attive. Dopo 861 passi (c),alcune strutture sono state distrutte e altre sono state create. L’attivita’ continua nella parte bassa del reticolo. Dopo 1416 passi (d), la dinamica del sistema e’ periodica, con strutture stabili e oscillanti (Wilensky, 1999).

 

Sebbene il gioco Life e’ un universo discreto con delle regole molto semplici e una fisica perfettamente nota, non e’ stato ancora possibile esplorare l’intero mondo digitale ad esso associato. Ci sono diverse questioni che ancora non hanno una risposta e forse non l’avranno mai.

Un altro esempio di sistema complesso e’ dato dagli automi cellulari unidimensionali, studiati negli ultimi 20 anni da Stephen Wolfram che a loro ha dedicato diversi articoli e libri. Il gioco della vita e’ un automa cellulare a due dimensioni in quanto le celle sono disposte su di un piano.

Gli automi cellulari unidimensionali invece si sviluppano spazialmente su un riga di celle (l’asse x dello schermo del computer) e temporalmente lungo le righe inferiori dello schermo (l’asse y del monitor). Le celle di questi automi possono prendere due valori: zero e uno. Lo stato di ogni cella dipende dai suoi stati precedenti e da quelli dei suoi primi vicini (destra e sinistro). Questo significa che a partire dagli otto possibili stati (111, 110, 101, 100, 011, 010, 001, 000), verra’ assegnato un valore (zero o uno) per ogni combinazione. Poiche’ ci sono otto combinazioni e due possibili stati per ogni cella questo significa che ci saranno 2^8=256 diverse regole (11111111, 11111110, 11111101, ..., 00000000). Trasformando queste stringhe in base dieci ci si puo’ riferire ad esse con un numero (per es. la regola 10101010 corrisponde a 27+25+23+21=128+32+8+2=170). Tra queste 256 regole, alcune sono equivalenti tra loro e solo 88 mostrano avere delle dinamiche diverse.

Esistono delle regole che producono dei patterns ripetitivi molto semplici (per es. regole 254, 250). Altre regole producono delle strutture nidificate (per es, regole 90 e 22). Ci sono altre che producono dei patterns pseudo-casuali (per es. regole 30 e 45). Finalmente ci sono delle altre che producono strutture localizzate (per es. regola 119). Questi casi vengono illustrati nella nell’immagine seguente.

Similmente al gioco della Vita, ci sono delle strutture che persistono nel tempo e viaggiano nello spazio. Quando le strutture collidono, interagiscono e possono trasformarsi. Notare che ci sono interazioni a diverse scale: tra celle e tra strutture. Ma da dove viene tutta questa complessita’?

La risposta e’ semplice: dall’interazione delle celle.

Esempi di differenti classi di automi cellulari unidimensionali con uno stato iniziale costituito da una singola cella attiva nella riga iniziale (il tempo fluisce verso il basso). La regola 250 (a) produce dei patterns regolari (classe I). La regola 90 (b) produce dei patterns nidificati (classe II). La regola 30 (c) produce un output quasi casuale (classe III) mentre la regola 110 (d) genera delle strutture localizzate molto complesse (classe IV).

 

Automa cellulare unidimensionale regola 110 partendo da una condizione iniziale casuale.

Un altro automa cellulare unidimensionale con la proprieta’ della reversibilita’. Partendo da uno stato casuale (prima colonna a sinistra) l’automa passa da uno stato disordinato ad uno ordinato (colonna 4 da sinistra). Nella quinta colonna fino all’ultima a destra e’ mostrato l’automa usando come stato iniziale quello finale della colonna quarta. Notare la reversibilita’.

Regola 150 in domini finiti di larghezza 17,19 e 31 con periodi 15,510 e 31 rispettivamente.

  La complessita’ come gia’ detto porta con se l’impossibilita’ di fare previsioni. Comunque diversamente dai sistemi caotici questa impossibilita’ non nasce dalla dipendenza sensibile dalle condizioni iniziali ma dalla rilevanza delle interazioni e dalla nuova informazione che esse creano. Per esempio, lo stato futuro della semplice regola 110 non puo’ essere determinato senza far partire la simulazione al computer. Le strutture emergenti del gioco della Vita non possono essere predette a partire dalle sue semplici regole se il sistema non e’ stato fatto evolvere prima.

Quasi tutti i sistemi del mondo reale sono aperti e quindi interagiscono continuamente con l’ambiente circostante che a sua volta puo’ cambiare in continuazione. Questo fa si che sia praticamente impossibile fare delle previsioni a lungo termine. Per far fronte ai continui cambiamenti dell’ambiente esterno i sistemi complessi si adattano ad esso per far fronte a tutte le perturbazioni esterne. La differenza tra l’adattamento e la prevedibilita’ sta nel fatto che quest’ultima cerca di intervenire prima che una perturbazione influenzi il sistema. L’adattamento invece entra in gioco una volta che la perturbazione si e’ manifestata e il sistema cerca di adattarsi alla nuova situazione senza l’intervento umano.

Si puo’ dire che l’adattamento e’ un tipo di creativita’ come riportato dal fisico Kauffman nel 2008. I sistemi adattivi possono creare delle nuove soluzioni ai problemi. Ci sono diversi modi per creare un sistema adattivo. Uno di questi e’ l’uso del concetto di auto-organizzazione. Un sistema puo’ essere descritto come auto-organizzante se il suo comportamento dipende dall’interazione dei suoi elementi e non dal comportamento del singolo elemento o da una sorgente esterna. Tutti gli esempi riportati precedentemente possono essere visti come sistemi complessi auto-organizzati.

Un esempio di adattamento attraverso l’auto-organizzazione e’ stato proposto per il coordinamento del traffico (Gershenson 2005). Invece di provare a prevedere quando un flusso significativo di autovetture arriva ad un incrocio per gestire un semaforo, si puo’ pensare di dare la preferenza alla strada con piu’ alta domanda. In questo modo, i veicoli sulla strada con piu’ bassa domanda attenderanno un pochino di piu’, aumentando pero’ la probabilita’ che arrivino altri veicoli che si aggiungeranno a quelli in attesa. Una volta che la domanda supera una certa soglia il semaforo fa scattare il verde. Con queste semplici regole locali e senza una diretta comunicazione tra i semafori, viene promossa una sincronizzazione adattativa che aggiusta essa stessa alle condizioni del traffico.

Un tale sistema auto-organizzante ha mostrato di riuscire a ridurre i tempi di attesa del 50% con una notevole riduzione di soldi ed inquinamento. E questo semplicemente imitando quello che fa la natura da milioni di anni.

La maggior parte degli automi cellulare (per esempio quelli unidimensionali di Wolfram) non sono interessanti ( nel senso che la loro dinamica o e’ semplice o completamente casuale). Da qui la questione generale: dove si trovano gli automi cellulari interessanti all’interno dell’intero spazio delle regole possibili? Una risposta e’ venuta dallo scienziato Langton che ha suggerito che il comportamento complesso compare alla frontiera tra l’ordine e il caos (edge of chaos), cioe’ quando le regole (tramite qualche parametro particolare) si approssimano alla regione caotica allontanandosi dalla regione fredda dell’ordine. Ragionando allo stesso modo e’ arrivato alla conclusione che i sistemi viventi e quelli complessi possono solo esistere alla frontiera del caos dove l’informazione puo’ essere immagazzinata cambiata e trasmessa.

Gli automi cellulari hanno dimostrato di essere molto utili per analizzare una grande varieta’ di fenomeni naturali; questo perche’ la maggior parte dei processi fisici sono locali (le molecole interagiscono con quelle a loro vicine, i batteri con quelli che orbitano nelle loro vicinanze, le formiche e le persone principalmente con chi gli sta vicino....). Sebbene i fenomeni naturali siano continui, esaminando il sistema a passi discreti temporali non diminuisce la potenza dell’analisi. Quindi nel mondo artificiale degli automi cellulari e’ possibile scoprire un microcosmo simile a quello del mondo reale.

Una delle cose che salta all’occhio di tutti e’ l’ordine della Natura. Da un’ameba alle piante agli animali e all’universo stesso si trova un incredibile ordine ovunque. Questo fa nascere un’ovvia questione: da dove viene questo ordine? Come si e’ originato?

Una delle lezioni fondamentali degli automi cellulari e’ la loro capacita’ di auto-organizzarsi. Da semplici regole locali che nulla dicono circa il comportamento globale del sistema e’ possibile vedere l’emergere dell’ordine. Nelle parole del biologo teorico, Kauffman, si tratta di ordine a gratis. Ed e’ proprio quest’ordine a gratis che ci permette di emulare l’ordine che ritroviamo in Natura. Alla creazione dell’ordine e’ legato il concetto di complessita’. Come puo’ un insieme finito di molecole creare una persona umana capace di ragionare? Chiaramente il tutto e’ piu’ grande della somma delle singole parti. Come e’ possibile che le termiti riescano a costruire delle strutture molto complesse se il singolo individuo che inizia il nido non riesce nemmeno a vivere per il tempo necessario a finirlo?

La risposta come abbiamo visto l’hanno dato gli automi cellulari: tutto nasce grazie all’interazione locale tra i componenti del sistema che si auto-organizza (siano essi animati che inanimati).

Per chi voglia addentrarsi nel mondo degli automi cellulari, puo’ farlo utilizzando il programma free Mcell di Mirek Wojtowicz, che puo’ essere scaricato da sul sito http://www.mirekw.com/ca/

venerdì 26 luglio 2013

Quanto sono frequenti i terremoti? C’e’ la possibilita’ di prevederli?


La domanda piu’ frequente rivolta ai sismologi dalla gente comune e’ la seguente: e’ possibile prevedere i terremoti? E se no perche’?
A parte i giudici dell’Aquila, nessuno al mondo puo’ affermare che i terremoti siano prevedibili. Nel corso di questo articolo cercheremo di capire il perche’. Quello che i geofisici hanno capito in anni di studio e’ che la dinamica della Terra puo’ essere modellizzata con la tettonica delle placche e che i terremoti non sono l’effetto di eventi casuali ma piuttosto il prodotto finale di una lunga serie di movimenti e stress che avvengono all’interno della terra in punti specifici.
Quindi detto cosi, i terremoti dovrebbero essere prevedibili. Ma nonostante tutti gli sforzi dei ricercatori  non esiste ancora un metodo che riesca a predire con assoluta certezza, il giorno, l’ora e la magnitudo di un terremoto. La Terra  e’ un sistema troppo complesso (non complicato) per riuscire a modellare il suo comportamento a livello microscopico. Molti scienziati, pensano che questo problema sia praticamente irrisolvibile. Prima di un terremoto, gli stress di una faglia (frattura tra due blocchi di roccia) possono rimanere in equilibrio critico per un tempo anche molto lungo. Riuscire a sapere quando una faglia subira’ il movimento relativo delle parti ad essa adiacenti (cioe’ quando avviene un terremoto) dipende da cosi tanti fattori aggiuntivi (alcuni microscopici altri macroscopici) oltre agli stress che la previsione diventa impossibile.
Lungo una faglia ci possono essere essenzialmente tre movimenti relativi che vanno sotto il nome di faglia normale, faglia inversa e faglia trascorrente rispettivamente.
 
Un’analogia puo’ essere quella della previsione dei movimenti della sabbia all’interno di una clessidra. Possiamo predire con grande accuratezza quanto tempo sara’ necessario alla sabbia per svuotare la parte superiore della clessidra. Possiamo anche predire la forma che la sabbia prendera’ una volta caduta nella camera inferiore ma non possiamo predire dove andra’ a finire ogni granello quando esso cade attraverso il foro della clessidra.
Il primo ad analizzare la dinamica di un mucchietto di sabbia e’ stato il fisico danese Per Bak che grazie ai suoi studi ha scoperto come molti sistemi dinamici naturali, fuori dall’equilibrio, possono auto-organizzarsi in uno stato critico governato da una legge di potenza.
L’apparato sperimentale ideato da Bak molto simile ad una clessidra è costituito da un piatto sul quale vengono fatti cadere uno alla volta dei granelli di sabbia. Gradualmente i granelli caduti formano un mucchietto i cui pendii lentamente diventano sempre più ripidi. Quando la pendenza supera un certo valore si formano delle valanghe. Man mano che si aggiunge altra sabbia la dimensione media di queste valanghe aumenta e alcuni granelli finiscono oltre il bordo del piatto. Il mucchietto cessa di crescere quando la quantità di sabbia aggiunta è in media uguale a quella che cade al di fuori del piatto ed è a questo punto che il sistema ha raggiunto lo stato critico.
A questo punto aggiungendo al mucchietto anche un solo granello di sabbia si possono innescare valanghe di qualunque dimensione.
Tracciando un grafico in scala logaritmica in cui si pone sull’asse y il numero di valanghe e sull’asse x la loro dimensione (il numero di granelli coinvolti) si ottiene una retta: questo vuol dire che il fenomeno e governato da una legge di potenza.
Se la forma del mucchietto è tale per cui la pendenza è inferiore a quella critica le valanghe sono più piccole di quelle che si verificano nello stato critico permettendo così alla sabbia di raggiungere lo stato critico. Se la pendenza è superiore a quella critica le valanghe sono più imponenti di quelle allo stato critico facendo crollare il mucchietto di sabbia fino allo stato critico.
I mucchietti supercritici proprio come quelli subcritici sono attratti verso lo stato critico. Quindi il sistema si auto-organizza in uno stato critico dove anche una piccola perturbazione puo’ generare una catastrofe. Questo modello sembra governare terremoti, valanghe, tsunami, economia e altri fenomeni. L’auto-organizzazione implica la validita’ di una legge di potenza, il che significa che non esiste nessuna scala particolare, cioe’ i terremoti di bassa intensita’ sono molto piu’ frequenti di quelli catastrofici. Il meccanismo alla base dei terremoti e’ lo stesso sia per quelli catastrofici che per quelli di bassa intensita’.
Sebbene la previsione dei terremoti al momento e’ troppo difficile (e forse lo sara’ per sempre come io credo) e’ possibile calcolare la probabilita’ che avvenga un terremoto in una particolare regione della Terra. Questo fa si che i progettisti degli edifici in regioni a rischio seguano delle regole piu’ stringenti rispetto a quelle utilizzate in zone a basso rischio sismico.
Qualsiasi mappa della sismicita’ mondiale come quella mostrata qui sotto, mostra che i terremoti per la maggior parte tendono a formare dei clusters con il 90% di essi disposti lungo le frontiere delle placche terrestri.

 


Occasionalmente comunque, ci sono sequenze di terremoti che capitano in posti dove non era stata osservata nessuna sismicita’ fino ad allora. Con molta probabilita' questo e’ dovuto al fatto che gli strumenti per registrare i terremoti sono nati circa 100 anni fa e quindi in zone di bassa sismicita’ non c’e’ stato tempo a sufficienza per raccogliere una quantita’ di dati statisticamente significativi. Ad ogni modo la sfida maggiore per i geofisici non e’ tanto l’identificazione delle regioni a rischio quanto riuscire a stimare la frequenza e l’energia degli eventi sismici di una particolare regione.
L’intensita’ di un terremoto e’ espressa in magnitudo M che e’ legata all’energia E rilasciata dall’evento sismico ( log10E = 11.8 + 1.5M ). Un aumento della magnitudo di un’unita’ implica un aumento dell’energia di un fattore 32. Fortunatamente per gli esseri umani i terremoti catastrofici sono molto meno frequenti di quelli piccoli. Nella tavola seguente sono riportate le intensita’ espresse in magnitudo dei terremoti e la loro media annuale. Per esempio mediamente in un anno avremo sulla terra un terremoto catastrofico con una magnitudo superiore a 8.

 

 
Il numero di vittime generato da un terremoto non dipende necessariamente dalla loro magnitudo. Terremoti moderati possono generare piu’ vittime di un terremoto forte se questi avvengono in aree dove le costruzioni sono fatiscenti o non costruite con criteri antisismici. Una frattura generata nel suolo da un terremoto aumenta approssimativamente con la sua magnitudo secondo la relazione:

log10(Area) = (1.05M)-2.95.

Un terremoto di magnitudo 5 generera’ una frattura con un raggio di circa 8 Km, un terremoto di magnitudo 6 invece una frattura con un raggio di circa 30 Km e un terremoto di magnitudo 8 una frattura con un raggio di circa 300 Km.
La distribuzione del numero di terremoti in funzione della magnitudo e’ stata trovata seguire una legge di potenza: quando graficata su una scala semilogaritmica la distribuzione e’ lineare. I primi ad accorgersi di questo comportamento furono Gutenberg e Richter nel 1944 che introdussero la famosa equazione che oggi porta il loro nome:

log10 N = a – bM

Qui N e’ il numero cumulativo di terremoti con magnitudo superiore o uguale ad M. a e b sono due costanti. Il grafico sottostante e’ un esempio di legge G-R per I terremoti registrati in Italia dal 1900 al 2006. Il grafico mostra la distribuzione Frequenza-Magnitudo (FMD in inglese) in accordo al database dell’INGV.
La costante b indica la pendenza della FMD e descrive la relativa intensita’ dei terremoti. Un valore alto di b indica una larga proporzione di terremoti deboli e viceversa. Il valore a (intercetta della retta con l’asse x) indica l’attivita’ sismica. Osservare che per piccole magnitudo la retta non segue la legge di potenza G-R in quanto e’ difficile riuscire a captare i terremoti di piccola intensita’. Nel nostro caso il valore di b e’ circa 1.1 e quello di a circa 8.65 considerando solo I terremoti con M>=5.

 

 

FMD degli eventi registrati in Italia dal 1900 al 2006 ( dati estratti dal database del INGV)

Correlazione tra il logN e magnitudo per I sismi avvenuti in  Italia dal 1900 al 2006. 


La pendenza del fit lineare rappresenta il coefficiente b (1.132) della relazione G-R e l’intercetta il valore a (8.656). Le equazioni fin qui descritte ci dicono anche un’altra cosa molto importante: i terremoti di bassa intensita’ non possono essere considerati come una valvola di sfogo per evitare i terremoti catastrofici. In una regione, il fatto di avere tanti terremoti di piccola intensita’ non esclude la possibilita’ che ci possa essere un terremoto catastrofico. Questo perche’ come abbiamo visto passando da un terremoto di magnitudo M ad uno di magnitudo M+1 comporta un’energia piu’ grande di un fattore 32 rispetto al terremoto di magnitudo M. Allo stesso modo pero’ la legge G-R prevede che passando da una magnitudo M ad M-1 il numero di terremoti aumenti di un fattore 10. Quindi ci possiamo aspettare solo 10 terremoti con magnuitudo M-1 rispetto ai 32 necessari per smaltire l’energia di un terremoto di magnitudo M. Ovviamente se il parametro b della legge G-R fosse molto vicino 1.5 allora sarebbe possibile scaricare l’energia accumulata dalla crosta terrestre tramite tanti piccoli terremoti.

Il parametro b dell’equazione di G-R e’ molto prossimo ad 1 anche se non per tutte le zone del mondo. Basta per esempio considerare i terremoti avuti dal 2009 al 2013 nella regione Abruzzo per vedere che il parametro b e’ pari a 0.975 con una variazione del 14% rispetto al valore ottenuto considerando l’Italia intera. Questo significa che l’Abruzzo e’ una regione dove e’ piu’ alta la probabilita’ di terremoti rispetto alla media italiana essendo il valore del parametro b piu’ piccolo. Osservare come il fattore moltiplicativo dipenda da 10-b e quindi piccole variazioni in b comportano grandi variazioni nel numero di terremoti.
 

FMD degli eventi sismici registrati in Abruzzo dal 2009 al 2013

Correlazione logN e magnitudo per I terremoti dell’Abruzzo tra il 2009 e il 2013. La pendenza del fit lineare rappresenta il coefficiente b (0.975) della relazione G-R e l’intercetta il valore a (5.853)

 
L’importanza della distribuzione FMD sta nel fatto che essa puo’ essere utilizzata per fare previsioni probabilistiche del pericolo di un sisma.  Riscrivendo la legge  di  G-R possiamo calcolare la probabilita’ che si verifichi un terremoto di magnitudo M maggiore di un certo valore di soglia Mt:

P(M>Mt) = 10(a-bM)/ dT

dove dT e’ il periodo temporale di osservazione (1900-2006 = 106 anni nel nostro caso). Usando a=8.656 e b=1.132 per il caso dei terremoti italiani dal 1900 al 2006 troviamo che un terremoto con magnitudo 6 o maggiore ha una probabilita’ annuale di circa 18%. In altre parole in Italia ci possiamo aspettare un terremoto con magnitudo di 6 o piu’ circa ogni 6 anni. Questo valore e’ confermato dall’analisi statistica dei terremoti Italiani con magnitudo maggiore o uguali a 6 nel periodo in considerazione. Come si vede dal grafico l’intervallo di tempo medio e’ di 6.57 anni, molto prossimo ai ~6 anni trovati con la legge di G-R. Dal grafico della probabilita’ cumulata si osserva anche che c’e’ una probabilita’ del 90% di avere un terremoto di intensita’ uguale o superiore a 6 nell’arco di 10 anni.
 

 

Come  gia' detto e’ molto importante il valore di a e b nella  legge  di   G-R. Qui sotto l’andamento della probabilita’ annuale di avere un terremoto di magnitudo maggiore o uguale a 6 in funzione del valore di b avendo assunto a=8.656. Un valore di b molto piccolo fa si che aumenti significativamente la probabilita’ annuale di un terremoto. Osserviamo anche che con un valore di b superiore a ~1.4 la probabilita’ di avere terremoti di intensita’ uguale o superiore a 6 e’ praticamente nulla. Da tutto cio’ si capisce che e’ molto importante stabilire con buona precisione il valore di a e b di una data regione per avere previsioni affidabili. Ma questo non e’ un impresa facile; questi valori sembrano cambiare non solo spazialmente ma anche temporalmente. Sono stati individuati infatti fino a 4 tipi di comportamento nel tempo. Nel primo il valore di b diminuisce prima dei grandi sismi. Nel secondo il valore di b prima aumenta e poi improvvisamente diminuisce prima di un evento catastrofico. Nel terzo modello il valore di b varia durante tutta la fase di assestamento mentre nel quarto modello il valore di b varia significativamente tra una regione e l’altra e durante lunghi periodi di tempo indipendentemente dall’intensita’ del sisma.
 

Andamento della probabilita’ annuale di un terremoto di magnitudo maggiore o uguale a 6, 7, 8 e 9 in Italia in funzione del valore di b avendo fissato a=8.656


Un esempio per tutti. In una piccola cittadina della California, Parkfield, sono stati documentati 6 terremoti di magnitudo 6 tra il 1857 e il 1966. In base a quanto detto ci si aspettava un terremoto di intensita’ pari a 6 intorno al 1988. Ma questo terremoto non c’e’ mai stato almeno fino ad oggi.

 



In prima approssimazione i terremoti non mostrano nessuna regolarita’ temporale e quindi e’ giusto assumere come distribuzione dei tempi di attesa una distribuzione di Poisson. Se mediamo i terremoti su una regione abbastanza vasta questa assunzione e’ pienamente verificata. Per esempio, il tasso globale di terremoti di magnitudo maggiore di 5 e’ quasi costante come richiesto da una distribuzione di Poisson.
 

Numero annuale di terremoti con magnitudo maggiore di 5 come ricavato dal database sella NEIC.

 
Questa distribuzione fu scoperta dal francese Simeon Denis Poisson nel 1837; essa permette il calcolo della probabilita’ del verificarsi o no di un certo numero di eventi in un intervallo temporale definito purche’ tali eventi si manifestino con un un tasso medio costante e siano indipendenti nel tempo.
Secondo quanto trovato da Poisson, la probabilita’ P di avere n terremoti in un intervallo temporale t e’ data da:

P(n, t,dt) = (t /dt )n e-t/ dt/ n!

dove dt e’ il tempo medio tra un terremoto e l’altro (il suo inverso e’ il tasso). Quindi la probabilita’ che non si verifichi nemmeno un terremoto in un intervallo temporale t e’ data da:

P(0, t, dt) = e-t/d t

oppure la probabilita’ che se ne verifichi almeno 1 e’ data da:

P(n>=1, t,dt) =1- P(0, t, dt) = 1- e-t/ dt

Usando per esempio la distribuzione di Poisson per eventi con magnitudo maggiore di 7 e un tasso di 0.05 terremoti al giorno possiamo stabilire che la probabilita’ che ci sia un evento in 14 giorni e’ del 50% e del 90% in 46 giorni.
Comunque le scosse di assestamento che si presentano dopo ogni evento principale e gli sciami sismici sono chiari eventi che violano l’assunzione di una distribuzione poissoniana. Dopo una scossa principale ci saranno sempre delle scosse di assestamento che si verificano nelle vicinanza della frattura principale
Un esempio e’ il terremoto dell’Aquila dove dopo la scossa principale avvenuta il 6 Aprile 2009 con magnitudo 6.3 l’attivita’ sismica e’ continuata per anni decadendo secondo la cosiddetta legge di Omori

N=At-a

dove A ed a sono due costanti, N e’ il numero di scosse e t il tempo trascorso rispetto alla scossa principale.



Dopo questa breve analisi cosa possiamo dire sulla previsione dei terremoti? E’ solo questione di tempo? Oggi non siamo capaci di prevedere i terremoti e chiunque afferma il contrario verra’ smentito dal prossimo catastrofico sisma non predetto. Ma un giorno ci riusciremo? Forse si ma non domani. Forse tra 10, 20 anni o forse mai. La natura per poter essere “creativa” deve stare all’edge del caos. Questo e’ vero per tutti i sistemi complessi che mostrano una grande resilienza e adattabilita’ a spesa dell’imprevedibilita’. Non si puo’ volere tutto dal nostro universo…………


http://www.wikio.it