La massa è una grandezza onnipresente nella dinamica. Ma cosa è la massa di un corpo? Fin dalle scuole medie siamo stati abituati ad associare al concetto di massa quello di quantita’ di materia che costituisce un corpo, per cui quanto maggiore è la massa di un corpo tanto maggiore è la quantità di materia in esso contenuta. Da un punto di vista fisico però questa non è una definizione corretta. La massa come grandezza fisica compare la prima volta nella seconda legge di Newton (F=m*a) che stabilisce che la forza esercitata su un corpo di massa m è data dal prodotto della massa per l’accelerazione e che quindi quest’ultima è inversamente proporzionale alla forza. Ciò significa che presi due corpi di massa diversa se applichiamo ad essi la medesima forza otterremo un’accelerazione diversa; in particolare il corpo dotato di massa minore subirà l’accelerazione maggiore. Emerge cosi la definizione di massa: è quella caratteristica dei corpi che li induce ad opporsi alla modifica del loro stato di quiete o di moto. E’ infatti piu’ difficile accelerare oggetti con grandi masse rispetto a quelli con piccole masse.
Questa è la definizione della cosiddetta massa inerziale di un corpo. Ma la massa ha anche un’altra caratteristica diversa dall’inerzia, che è quella di esercitare una forza gravitazionale (F=G*(M*m)/d2) su altri corpi attirandoli a sè in modo inversamente proporzionale al quadrato della distanza tra i corpi (legge di gravitazione universale). In questo caso si parla di massa gravitazionale. La domanda sorge spontanea: c’è un qualche legame tra queste due definizioni? In genere si parla di massa senza preoccuparsi di specificare se sia quella inerziale o quella gravitazionale. Come mai? Perche’ esiste un principio chiamato il principio di equivalenza stabilito da Einstein nel 1907 che ce lo permette. Non c’e’ modo di distinguere gli effetti della gravita’ da quelli prodotti da un sistema di riferimento accelerato. Cosi la massa di un corpo che viene attratto dalla gravita’ terrestre non puo’ essere diversa da quella di un corpo soggetto ad un’accelerazione pari a quella terrestre in assenza di gravità. Quindi massa inerziale e massa gravitazionale sono la stessa cosa. Ma da dove deriva la massa dei corpi? Ovviamente dalla massa delle particelle ultime che costituiscono la nostra realta’ come quarks ed elettroni. E da dove viene la massa delle particelle elementari che costituiscono il nostro Universo? Per rispondere dobbiamo partire da molto lontano, circa 13.8 miliardi di anni fa. Nei primi istanti dopo il Big Bang, l’Universo era molto caldo e pieno di particelle, antiparticelle e quanti di radiazione. Subito dopo ha iniziato ad espandersi raffreddandosi: le lunghezze d’onda di tutte le radiazioni sono state spostate a volori più alti e quindi ad energie piu’ basse (E=h/ʎ) in quanto stirate dall’estensione del tessuto spazio-temporale.
Se esistono particelle o antiparticelle che oggi ancora non abbiamo scoperte, di sicuro vennero create nei primi istanti di vita dell’Universo quando esso era caldissimo e c’era abbastanza energia per creare qualsiasi particella o antiparticella grazie all’equazione di Einstein E=mc2. Comunque le particelle massive come le conosciamo oggi a quei tempi ancora non avevano massa. E quindi viaggiavano alla velocità della luce come fanno oggi i fotoni, gluoni e onde gravitazionali che sono i mediatori (bosoni di gauge) delle interazioni elettromagnetiche, nucleari forti e gravitazionali rispettivamente.
Come mai le particelle si trovavano in uno stato cosi diverso da quello di oggi? Perchè la simmetria del campo elettrodebole che dà vita al bosone di Higgs ancora non si era rotta. Si trattava di un mondo molto diverso da quello di oggi. Non c’erano atomi, non c’era la tabella periodica, non c’era biologia, non c’erano stelle e non c’eravamo noi.
Se oggi diamo uno sguardo al Modello Standard esso e’ organizzato come segue:
· 6 quarks, ognuno dei quali in 3 stati di colore diversi e le loro controparti (antiquarks)
· 3 leptoni carichi (e, μ, τ) e 3 neutri (νe, νμ, ντ) e la loro controparte di antimateria
· 8 gluoni senza massa che mediano la forza nucleare forte tra i quarks
· 3 bosoni pesanti (W+, W-, and Z0) che mediano la forza nucleare debole
· il fotone (γ), senza massa e mediatore della forza elettromagnetica
All’inizio della storia dell’Universo pero’ come detto prima le cose non stavano cosi in quanto la simmetria elettrodebole ancora non era stata infranta. Invece dei bosoni dell’interazione debole ed elettromagnetica che conosciamo oggi (W+, W-, Z0, γ), c’erano 4 bosoni per la forza elettrodebole (W1, W2, W3, B) e tutti senza massa.
Le altre particelle erano le stesse di oggi ad eccezione del fatto che non avevano ancora la massa. Questo era quello che fluttuava nell’Universo primordiale con continui scontri, annichilazioni e creazione di particelle, tutte in moto alla velocità della luce. Tutto questo fino a quando l’energia dell’Universo scese al di sotto di un valore critico. Fino a questo momento il campo di Higgs lo si può pensare come del vino all’interno di una bottiglia.
Quando il livello del vino e’ alto, se una goccia di olio cade nella bottiglia, essa rimarrà in superficie in un punto qualsiasi di un disco. Come il livello del liquido si abbassa, il fondo della bottiglia comincia ad emergere dal livello del vino che rimane separato in due diverse zone guardando la bottiglia esattamente di fronte a noi. Se adesso nella bottiglia cade una goccia di olio questa non potra’ andare ovunque come prima. Cadra’ di sicuro nel liquido che questa volta pero’ e’ concentrato in un anello intorno al rialzo del fondo della bottiglia. Questo e’ quello che in fisica si chiama una rottura spontanea di simmetria. Quando succede questo il campo di Higgs si deposita sul fondo in uno stato di equilibrio di minima energia. Che comunque non è proprio zero ed è chiamato lo stato non nullo del vuoto. Mentre con la simmetria rispettata (bottiglia piena) le particelle non hanno massa, con quella rotta (bottiglia quasi vuota o vuota) cambia tutto.
Il primo a pensare a questo tipo di campo fu un fisico il cui cognome è proprio quello che oggi porta la particella piu’ importante del momento: Higgs. Egli nei primi anni sessanta oltre ai campi quantistici che caratterizzano le quattro forze fondamentali ipotizzò l’esistenza di un ulteriore campo phi che doveva pervadere l’intero spazio, e la cui energia poteva essere espressa come:
E(phi) =alpha*phi2+beta*phi4.
Quando l’età dell’universo era inferiore a 10-11 secondi, e la temperatura era superiore a 1015 gradi Kelvin, il campo di Higgs era effettivamente nullo perché, i parametri alpha e beta erano entrambi positivi e la minima energia si realizzava per phi=0 (vedi immagine seguente). Ma il raffreddamento dell’universo conseguente alla sua espansione portò ad una transizione di fase, riducendo il parametro alpha fino a renderlo negativo. L’energia del campo di Higgs assunse allora la tipica forma a sombrero dando luogo ad una situazione paradossale: la minima energia non si realizzava più per un valore nullo del campo, ma per uno dei valori caratterizzanti il “fondovalle” circolare. Scivolando casualmente verso uno di questi valori il campo di Higgs operò una rottura di simmetria in quanto aveva selezionato un punto particolare tra tutti quelli (inizialmente equivalenti) del canyon. Osserviamo che la condizione con alpha positivo e beta negativo non e’ possibile in quanto la minima energia del sistema si ottiene per valori infiniti di phi. La rottura di simmetria del campo di Higgs ha portato ad una distinzione “tangibile” tra i vari bosoni. La sua comparsa ha prodotto una distinzione tra i fotoni, che non interagiscono col campo stesso e che hanno quindi continuato ad essere privi di massa, e i bosoni W e Z, che ne hanno acquisita una. Pertanto, la forza trasportata dai fotoni ha mantenuto un raggio di azione infinito, mentre quella veicolata dai bosoni W e Z lo ha ridotto drammaticamente, “sdoppiando” la forza elettrodebole originaria in forza elettromagnetica e forza debole. La comparsa di un mare di bosoni di Higgs che pervade l’intero spazio ha naturalmente dato origine alla massa di tutte le altre particelle, siano esse “materiali” quali i quark e gli elettroni, oppure mediatrici di forze (gli altri bosoni quali i gluoni, relativamente alla forza forte, e i gravitoni, relativamente alla forza gravitazionale). La stessa massa dei bosoni di Higgs è dovuta all’interazione di ognuno di essi con gli altri circostanti. In seguito al raffreddamento dell’Universo c’e’ stata una transizione spontanea di fase del campo di Higgs che ha acquistato cosi le caratteristiche odierne. Non è difficile imbattersi in sistemi fisici che subiscono una transizione di fase regolata da un parametro d’ordine quale, ad esempio, la temperatura. Il caso più comune è dato dall’acqua che, raffreddandosi al di sotto di 0 ºC, passa dallo stato liquido a quello solido. In questo passaggio essa riduce la propria simmetria. Poiché questo avviene senza alcun intervento esterno, si parla di rottura spontanea di simmetria. Tale rottura non è una specifica conseguenza dell’esempio appena discusso, ma è un risultato generale associato a qualunque tipo di transizione di fase, indipendentemente dal sistema fisico coinvolto.
Allo stato liquido le molecole hanno grande mobilità e, nel loro insieme, hanno una distribuzione caotica. Per temperature inferiori a 0 ºC le molecole si “incastrano” tra loro formando celle esagonali. Benché il ghiaccio possa apparire più simmetrico dell’acqua, in realtà è vero il contrario. L’aspetto caotico dell’acqua, infatti, non cambia, da qualunque punto di vista la si osservi: in altre parole, l’acqua è altamente simmetrica perché invariante per qualunque tipo di rotazione. Il ghiaccio, invece, è invariante solo per rotazioni di (multipli di) 60 gradi, e presenta quindi una simmetria inferiore.
Torniamo al campo di Higgs. Una volta che viene rotta la simmetria, il campo di Higgs origina 4 masse due cariche e due neutre e accadono le seguenti cose:
· Le particelle W1 e W2 “mangiano” i bosoni carichi del campo di Higgs diventando le particelle W+ e W- di oggi
· La particella W3 e B si mescolano insieme con una combinazione che “mangia” il bosone neutro del campo di Higgs diventando cosi il bosone Z0, e l’altra combinazione rimanendo a digiuno diventando il fotone senza massa che conosciamo oggi (γ).
· L’ultimo bosone di Higgs nato dalla rottura della simmetria guadagna massa e diventa quello che oggi chiamiamo il bosone di Higgs.
· Infine il bosone di Higgs si accoppia a tutte le particelle del modello Standard dando origine alla massa dell’Universo.
Questa in breve e’ la storia dell’origine della massa dell’Universo.
Questo processo e’ chiamato rottura spontanea della simmetria. E per i leptoni e i quarks del modello Standard, quando questa simmetria di Higgs viene rotta, ogni particella ottiene massa per due motivi:
1. Il valore di aspettazione del campo di Higgs (il suo valore medio pari a 246 GeV)
2. Una costante di accoppiamento
Il valore di aspettazione del campo di Higgs e’ lo stesso per tutte le particelle e non molto difficile da determinare. La costante di accoppiamento invece non solo e’ diversa per ognuna delle particelle del Modello Standard ma e’ anche arbitraria. Qui di seguito un’immagine che mostra come il bosone di Higgs dopo la rottura di simmetria si e’ accoppiato ai quarks, leptoni e bosoni W e Z dandogli massa. Non si e’ accoppiato con i fotoni e gluoni e questo fa si che queste particelle non abbiano massa.
A questo punto sappiamo che le particelle hanno massa, sappiamo come l’hanno ottenuta e quali sono le particelle responsabili. Ma ancora non abbiamo nessuna idea del perche’ le particelle abbiano proprio questi valori di massa e non altri. Esse hanno valori che coprono ben 7 ordini di grandezza con i neutrini essendo le particelle piu’ leggere e il top quark quelle piu’ pesanti.
Una volta che l’Universo ha acquistato la massa ha iniziato a fare cose che prima non poteva fare. Adesso mentre si raffredda puo’ creare particelle come protoni e neutroni. Creare successivamente i nuclei atomici e gli atomi neutri. Dopo un lasso di tempo molto lungo possono nascere le stelle, le galassie, i pianeti e finalmente la vita. Senza il bosone di Higgs nulla di tutto questo poteva accadere. Grazie al suo campo e il suo accoppiamento l’Universo e’ diventato quello che e’.
La scoperta del bosone di Higgs ha ulteriormente confermato la validita’ del modello standard che permette di descrivere l’Universo (ad eccezione della gravita’) con una formula (Lagrangiana, funzione data dalla differenza tra energia cinetica e quella potenziale di un sistema) molto elegante:
I protagonisti della lagrangiana del modello standard sono i campi, più fondamentali delle particelle dopo l’affermarsi del principio di indeterminazione di Heisenberg nella seconda metà degli anni venti del ’900. I campi sono quantità di vario genere con valori assegnati in ogni punto dello spazio e del tempo, mentre le particelle (l’elettrone, il fotone, ecc.) sono vibrazioni localizzate dei corrispondenti campi (il campo dell’elettrone, il campo elettromagnetico nel caso del fotone, ecc.), simili alle onde di un lago altrimenti calmo. Nel primo pezzo della lagrangiana, compaiono i campi dei mediatori delle interazioni elettromagnetiche (il fotone, “scoperto” da Einstein nel 1905), delle interazioni deboli (i bosoni W e Z, la cui scoperta valse il premio Nobel a Carlo Rubbia e Simon van der Meer) e delle interazioni forti (i gluoni, rivelati nel laboratorio Desy ad Amburgo alla fine degli anni settanta). Nel secondo e fino al quinto pezzo della lagrangiana intervengono i costituenti veri e propri della materia, denotati globalmente con la lettera greca Ψ: l’elettrone, il neutrino e i due quark, up e down, che sono i principali componenti del protone e del neutrone. In realtà, nel quarto pezzo, il campo Ψ porta un indice “i” o “j”, a ricordare che i campi di materia esistono in tre repliche, dunque “i, j” da 1 a 3, con interazioni identiche fra loro ma con masse diverse. È nell’universo primordiale che le repliche più pesanti, inizialmente scoperte nei raggi cosmici (il muone e il quark strange) e prodotte artificialmente negli acceleratori di alta energia (il leptone tau e i quark top, bottom e charm), vivono democraticamente insieme alla prima, quella di cui siamo fatti anche noi (l’elettrone e i quark up e down). Infine negli ultimi due pezzi, ma già anche nel quarto pezzo, compare il campo di Higgs, denotato con la lettera greca Φ, ultimo a completare il quadro delle particelle previste e scoperte nel modello standard: una progressione iniziata nel 1897 con la scoperta dell’elettrone e terminata nel 2012 con il bosone di Higgs. Chiudiamo in bellezza. Qui di seguito la formula per esteso della Lagrangiana del Modello Standard. E’ vero, il nostro Universo e’ scritto con il linguaggio della matematica, ma le formule non sono cosi semplici come quelle di Newton. Sono molto piu’ complesse specialmente se pensiamo che ancora manca il contributo della gravita’ che resiste a tutti gli attacchi dei fisici che la vogliono quantizzare.
Avrei voluto averla come professore di fisica a liceo. Bella spiegazione chiara e semplice anche per un profano come me
RispondiElimina