domenica 22 luglio 2018

Cucinare una pizza: questione di fisica e non solo


clip_image002Cuocere una pizza puo’ apparire un processo molto semplice a chi come noi e’ abituato a vedere questo disco di pasta uscire velocemente da un forno ed essere servito a tavola per la gioia di chi attende. Eppure in questo semplice processo c’e’ tanta fisica che tre studiosi hanno provato ad analizzare in un loro articolo apparso su arxiv nel mese di Giugno. Il loro obiettivo e’ stato quello di analizzare e confrontare la cottura di una pizza in un forno a legna e in uno elettrico. I principi e le equazioni chiamate in causa sono quelle della termodinamica, una branca della fisica.

Quando si parla di pizza, tutti pensano a Napoli anche se l’origine della pizza è molto piu’ antica. Nel Neolitico tra la Cina e le Americhe c’era gia’ l’abitudine di preparare delle focacce non lievitate fatte con farina di grano tenero (farro, orzo) che venivano poi cotte su pietre riscaldate. La parola pizza compare per la prima volta su una pergamena latina dove viene riportata una lista di donazioni fatte da un proprietario terriero al vescovo di Gaeta. Il documento datato al 996 d.C. stabiliva il dono di 12 pizze ogni Natale e Pasqua. La pizza comunque come la conosciamo oggi di sicuro e’ un invenzione dei napoletani, che aggiunsero gli ingredienti universalmente associato oggi alla pizza: pomodoro e mozzarella. I napoletani iniziarono ad usare il pomodoro dopo che Colombo ritorno’ dalle Americhe. Esso appare per la prima volta in un libro di cucina “Cuoco galante” del 1819, scritto dal cuoco Vincenzo Corrado. La mozzarella invece viene citata per la prima volta nel libro di ricette “Opera” del 1570 a cura di Bartolomeo Scappi. Diversi documenti dimostrano che fino al 18 secolo la pizza napoletana era un semplice disco di pasta cotto o fritto, con sopra lardo, formaggio pecorino, olive, sale o piccoli pesci chiamati cecinielli. Durante il 19 secolo ci furono fino a 200 pizzaioli sparsi per i vicoletti di Napoli a vendere le loro pizze cotte o fritte con sopra pomodoro e basilico. Nel 1889, dopo l’unificazione dell’Italia, il pizzaiolo Raffaele Esposito decise di fare un dono alla regina di Italia aggiungendo al pomodoro e al basilico, la mozzarella. La combinazione dei tre colori bianco, rosso e verde simboleggiava la bandiera italiana e da allora in poi questa pizza e’ venne chiamata Pizza Margherita. Raffaele certamente non poteva pensare che un semplice impasto potesse diventare uno degli oggetti più famosi al mondo. Oggi in Italia esistono diversi tipi di pizza a seconda della regione in cui viene preparata. Dalla pizza margherita, marinara e calzone della regione campana alla pizza di sfrigoli dell’abruzzo o alla sfinciuni siciliana solo per citarne alcune. Veniamo adesso alla studio vero e proprio. Quale e’ il segreto di una buona pizza? Come molti pizzaioli riportano, il forno a legno dovrebbe essere superiore a quello elettrico. La temperatura tipica per una pizza alla romana e’ tra 325-330 gradi centigradi mentre per quella napoletana e’ intorno ai 400 gradi. Con queste temperature una pizza è pronta in circa due minuti e un minuto rispettivamente. Assumendo che in un forno possono andare due pizze in contemporanea, in un ora e’ possibile fare tra le 50 e le 60 pizze romane. Nelle ore di picco, comunque i pizzaioli sono abituati ad alzare la temperatura del forno, arrivando anche a 390 gradi per ridurre cosi il tempo di cottura che passa da due minuti a circa 50 secondi e servendo cosi più clienti. Questa operazione quasi innocua, in effetti altera la qualità della pizza in quanto il fondo e la crosta vengono bruciate e il pomodoro non è cotto abbastanza. Poiché non è sempre possibile trovare una pizzeria con il forno a legna, e’ interessante analizzare i possibili vantaggi del forno a legna rispetto a quello elettrico e se c’è la possibilità di migliorare le prestazioni di quest’ultimo per fare una pizza decente. Iniziamo col richiamare alcune dei concetti di base sulla trasmissione del calore. Quando si parla di calore si ha in mente l’energia di un sistema associata al moto caotico degli atomi, molecole o altre particelle di cui e’ composto. Comunque va precisato che il calore come il lavoro non e’ una variabile di stato di un sistema in quanto dipende da come esso ha raggiunto il suo stato, cioe’ dipende dallo stato iniziale, quello finale e dal modo in cui tale variazione e’ stata compiuta. Come il lavoro, il calore e’ un modo conveniente per descrivere un trasferimento di energia. La quantita’ di calore necessaria ad aumentare la temperatura di una massa unitaria di un materiale di un grado Kelvin e’ chiamata calore specifico del materiale:

c=dQ/M*dT

Qui M e’ la massa del sistema e dQ e’ la quantita’ di calore richiesto per far variare la temperatura dT. Il calore specifico e’ misurato in J/(Kg*K).

In caso di contatto tra due sistemi con due temperature diverse, il calore fluira’ da quello piu’ caldo a quello piu’ freddo. Il flusso di calore q e’ la quantita’ di calore dQ che passa attraverso un’ area S per unita’ di tempo dt e nella direzione in cui cambia la temperatura:

clip_image004

q=dQ/(S*dt)

Nel caso piu’ semplice di un sistema omogeneo, combinando le due equazioni precedenti otteniamo:

q=(c*M*dT)/(S*dt)

Ricordando adesso la definizione di densita’ di materia rho=M/V=M/(S*dx) otteniamo:

q=c*rho*dx*dT/dt=c*rho*((dx)2/dt)*(dT/dx)=-k*dT/dx

dove k e’ la conducibilita’ termica e il termine dx2/dt e’ la diffusivita’ termica.

Questa equazione e’ conosciuta con il nome di legge di Fourier ed e’ valida per piccole variazioni di temperatura. Vediamo adesso come il calore penetra in un mezzo dalla superficie di contatto. Rifacendoci all’immagine precedente assumiamo che durante il tempo t la temperatura nel piccolo cilindro di lunghezza L e sezione S sia cambiata di un dT. Utilizzando la legge di Fourier e sostituendo dx con L otteniamo:

c*rho*L*(dT/t)=k*(dT/L)

Risolvendo rispetto ad L si ha:

L=((k*t)/(c*rho))1/2 =(csi*t)1/2

cioe’ il fronte di temperatura entra nel mezzo come la radice quadrata del tempo t. Il parametro csi e’ chiamato diffusivita’ termica. Ovviamente l’approccio semplicistico utilizzato ha portato ad un risultato non preciso in quanto l’equazione di Fourier richiede la soluzione di equazioni differenziali. Comunque la differenza tra la soluzione trovata e quella reale sta solo in una costante pi greco:

L=(pi*csi*t)1/2

Torniamo adesso ai due sistemi in contatto tra loro. Il primo con parametri k1, c1, rho1 e temperatura T1 e il secondo con parametri k2, c2, rho2 e T2. Indichiamo con To la temperatura all’interfaccia tra i due sistemi. Come detto precedentemente il calore fluisce dal corpo piu’ caldo a quello piu’ freddo, portando cosi la temperatura dei due mezzi alla temperatura di interfaccia To:

k1*((T1-To)/L1)=k2*(To-T2)/L2 (*)

cioe’

k1*((T1-To)/(pi*csi1*t)1/2)=k2*((To-T2)/(pi*csi2*t)1/2)

Risolvendo rispetto a To otteniamo

To=(T1+n21*T2)/(1+n21)

dove n21=(k2/k1)*(csi1/csi2)1/2

Notiamo che To non dipende dal tempo e quindi rimane costante durante il processo di trasferimento di calore. Nel caso di mezzi uguali con diverse temperature si ottiene

To=(T1+T2)/2

Cioe’ la temperatura all’interfaccia e’ semplicemente il valore medio delle due temperature. Siamo adesso pronti per passare allo studio del forno a legna. Iniziamo col calcolare la temperatura all’interfaccia tra il fondo della pizza e i mattoni del forno. I parametri necessari vengono riportati in questa tabella.

image

Assumendo che la temperatura iniziale dell’impasto sia di 20 gradi (Ti=20 C) e che la temperatura all’interno del forno di una pizzeria romana sia di 330 gradi (Tr=330 C) possiamo calcolare la temperatura all’interfaccia pizza- mattoni del forno:

Tir=(Tr+n21*Ti)/(1+n21)=(330+0.65*20)/1.65=208 C

Con queste temperature mediamente una pizza romana e’ pronta in circa 2 minuti. Ripetiamo adesso lo stesso calcolo per il forno elettrico la cui superficie dove viene poggiata la pizza e’ fatta di acciaio. Questa volta il coefficiente n21 sara’ 0.1 per cui la temperatura all’interfaccia pizza – superficie forno sara’:

Tir=(330+0.1*20)/1.1=300 C

Effettivamente la temperatura all’interfaccia e’ alta e questa determinera’ le classiche bruciature che tutti noi almeno una volta abbiamo visto sul fondo di una pizza. Nel caso della pizza napoletana questa temperatura sara’ ancora piu’ alta essendo la temperatura tipica del forno a legna di circa 400-450 gradi. A quale temperatura allora, nel caso di una pizza romana, dovrebbe essere impostato il forno elettrico per avere sul fondo della pizza la stessa temperatura di un forno a legna? Basta imporre nell’ultima equazione Tir a 208 gradi e ricavare Tr. Con semplici passaggi si ottiene 230 gradi, una temperatura decisamente piu’ bassa dei 330 gradi del forno a legna. Se fosse tutto qui, allora con un semplice aggiustamento di temperatura la pizza cotta col forno elettrico potrebbe essere equiparabile a quella del forno a legna. Poiche’ e’ ben noto a tutti che questo non e’ vero vuol dire che c’e’ qualche altra cosa che non abbiamo considerato. Ma cosa? I possibili modi di trasmissione del calore. Fin qui abbiamo considerato solo il meccanismo della conduzione. Ma ci deve essere almeno un altro modo. Il sole non e’ in contatto con noi, eppure il suo calore arriva a noi. Come? Grazie alla radiazione termica, cioe’ ai raggi infrarossi. L’energia termica che arriva su un cm2 di superficie per secondo e’ data dalla cosiddetta legge di Stefan-Boltzmann:

I=sigma*T4

dove la costante sigma vale 5.67E-8 W/(m2K4). L’intensita’ I e’ misurata in W/m2 e la temperatura in gradi Kelvin. Poiche’ i forni a legna hanno la volta a doppia corona riempita con sabbia, la temperatura al suo interno rimane costante e cioe’ Tr=330 C=603 K essendo T(K)=273+T(C) la relazione per passare da gradi centigradi a quelli Kelvin. Essendo tutte le parti del forno alla stessa temperatura questo significa che esso e’ pieno di radiazione infrarossa che investe la pizza da tutte le parti. Grazie alla legge di S-B possiamo calcolare questa quantita’:

I=5.67E-8*6034 =7.5 kW/m2

cioe’ ogni secondo su un cm2 della pizza arrivano circa 0.75 joule di radiazione infrarossa. Va notato comunque che anche la pizza allo stesso tempo emette una radiazione data da I=sigma*(Tpizza)4. Quanto vale Tpizza? Poiche’ la maggior parte del tempo di cottura richiesto vien speso per far evaporare l’acqua dall’impasto possiamo assumere che la temperatura della pizza Tpizza sia di 100 gradi, cioe’ 373 gradi Kelvin che risulta in una radiazione termica di circa 1.1 kW/m2. Circa il 15% della radiazione ricevuta dalla pizza viene riemessa nel forno. Per il forno elettrico nonostante la temperatura sia piu’ bassa (230 C) la corrispondente energia termica incidente su 1 cm2 e’ piu’ del doppio di quella del forno a legna:

I=5.67E-8*(503)4=3.6 kW/m2

mentre quella emessa dalla pizza rimane la stessa di prima. Calcoliamo adesso la quantita’ di calore che arriva per cm2 sul fondo della pizza grazie alla conduzione. Possiamo farlo utilizzando l’equazione (*):

q(t)=k*(T1-To)/(pi*csi*t)1/2

dove T1 e’ la temperatura del forno. Contrariamente alla legge di Stefen-Boltzmann il trasferimento di calore per conduzione dipende dal tempo t. Quindi la quantita’ di calore trasferita ad 1 cm2 di pizza in un tempo di cottura tc e’ dato da:

Q(tc)=2*k*(T1-To)*(tc/(pi*csi))1/2

che sommata a quella per irraggiamento ci da’:

Qtot(tc)=sigma*(T14-Te4)*tc+2*k*(T1-To)*(tc/(pi*csi))1/2

dove Te e’ la temperatura di evaporazione dell’acqua dall’impasto della pizza (100 gradi) e T1 la temperatura del forno. Per poter ricavare il tempo di cottura tc c’e’ bisogno di determinare la quantita’ totale di calore che arriva sulla pizza per cm2. Per fare questo dobbiamo tener presente che come detto in precedenza Qtot serve per portate l’impasto dalla temperatura di 20 gradi fino a 100 gradi che secondo la legge di Fourier e’ dato da:

Q=c*rho*d*(100-20)=80*c*rho*d

dove c e rho sono il calore specifico e la densita’ dell’impasto e d lo spessore della pizza. Ancora non abbiamo finito. Durante la cottura c’e’ l’evaporazione dell’acqua dall’impasto come anche dal pomodoro, mozzarella e gli altri ingredienti utilizzati e quindi possiamo scrivere:

Q’=a*ca*rho’*d

dove a e’ la frazione di massa dell’acqua evaporata, rho’ la densita’ dell’acqua e ca il calore latente di evaporazione dell’acqua. Q+Q’ e’ la quantita’ di calore per unita’ di area richiesta per portare l’acqua all’ebollizione e poi in fase vapore. Se forniamo calore ad un liquido esso aumenta la sua temperatura fino al momento in cui non raggiunge il suo punto di ebollizione. Durante il passaggio di stato la temperatura del liquido resta invece invariata nonostante l'apporto di calore. Il calore fornito non viene utilizzato per aumentare l'energia cinetica delle particelle, ma si trasforma in un aumento di energia potenziale delle particelle gassose.

Tale calore, assorbito dal sistema senza produrre un aumento di temperatura, è noto come calore latente.

clip_image008

Dall’equazione:

Q+Q’=Qtot

possiamo ricavare tc, il tempo di cottura. Per fare questo pero’ bisogna conoscere la quantita’ di acqua che e’ evaporata durante la cottura della pizza. Una buona assunzione e’ un 20% di perdita di acqua cioe’ a=0.2. Inserendo tutti i valori riportati sino ad ora si ottiene finalmente il tempo di cottura in forno a legna per una pizza romana. Questo risulta essere di 125 secondi. Per il forno elettrico un calcolo analogo porta ad un tempo ottimale di cottura di circa 170 secondi. Effettivamente per una pizza romana i tempi di cottura con un forno a legna si aggirano intorno ai 2 minuti come effettivamente riportato dai pizzaioli di questa citta’. Con questa equazione possiamo anche calcolare quanto tempo e’ necessario per la cottura di una pizza in un forno a legna se la temperatura del forno e’ quella usata dai napoletani e cioe’ di circa 400. In questa caso ci sarebbe una riduzione dei tempi di cottura con un aumento della produttivita’ di circa il 50% (il tempo di cottura si aggira intorno a 82 secondi). Questa la fisica. Interviene poi l’esperienza del pizzaiolo con un magico trucco. Quando sulla pizza ci sono elementi con un alto contenuto di acqua come uova, alici, vegetali il pizzaiolo, una volta verificato che il fondo della pizza e’ cotto la prende con la pala in legno o alluminio e la tiene sollevata dai mattoni del forno per circa 30 secondi. In questo modo si espone la superficie della pizza alla sola radiazione termica. Si evita cosi la bruciatura del fondo della pizza e si ottiene la corretta cottura della superficie. Come spesso si fa in fisica, allo scopo di ottenere dei buoni risultati senza complicare eccessivamente il modello, e’ stato trascurato il terzo modo di trasferimento del calore, quello per convezione visto che il suo effetto e’ trascurabile.

clip_image010

Nonostante tutti gli sforzi tecnologici da parte dei costruttori di forni elettrici (utilizzazione di materiale ceramico come fondo invece dell’acciaio, rotazione della pizza durante la cottura, forni a convezione per simulare il movimento dei gas all’interno di un forno a legna) il forno a legna rimane lo strumento ideale per cuocere una pizza. L’odore del pomodoro e della mozzarella che cuociono misto all’odore della legna che brucia e’ un qualche cosa di unico ed eccezionale che mai nessuna tecnologia potra’ sostituire. Buona pizza a tutti.

Nessun commento:

Posta un commento

http://www.wikio.it