giovedì 18 aprile 2013

La bellezza dell’invarianza di scala

 

In questo nuovo post parleremo di frattali. Si tratta di oggetti geometrici che presentano una struttura complessa e dettagliata ad ogni livello di ingrandimento. Godono della proprietà di invarianza di scala, in altre parole sono “auto somiglianti” , cioè ogni piccola porzione del frattale può essere vista come una riproduzione su scala ridotta dell’intera figura. Un esempio di oggetto frattale a noi familiare e’ il cavolbroccolo romano mostrato in figura 1.

 

Figura 1. Un esempio di oggetto frattale: il cavolbroccolo.

Nel 1623, Galileo Galilei nel suo Saggiatore scriveva: Il libro dell’Universo e’ scritto in lingua matematica e i caratteri sono triangoli, cerchi ed altre figure geometriche, senza i quali mezzi e’ impossibile a intenderne umanamente parole; senza questi e’ un aggirarsi vanamente in un oscuro labirinto.

Che l’Universo fosse scritto in lingua matematica, il grande fisico toscano aveva ragione. Ma sui caratteri no. Basta guardare il mondo che ci circonda per capire che gli oggetti non sono rappresentabili con la semplice geometria euclidea (figura 2).

 

Figura 2. Gli oggetti reali con le forme della geometria classica.

Cio’ spinse il matematico B. Mandelbrot nel 1975 ad osservare che la geometria euclidea e’ incapace di descrivere la natura nella sua complessita’, in quanto si limita a descrivere tutto cio’ che e’ regolare, mentre osservando la natura vediamo che le montagne non sono coni, le nuvole non sono delle sfere, le coste non sono cerchi; si tratta di oggetti geometricamente molto complessi. Da qui nasce la geometria frattale. Una delle proprietà tipica dei frattali, oltre all’auto somiglianza, e’ la loro dimensione non intera che e’ abbastanza inusuale per noi abituati a giocherellare con la geometria Euclidea. Vediamo di che cosa si tratta.

Per prima cosa dobbiamo capire che cosa si intende per dimensione. Aristotele affermava: “..... delle grandezze, quella che ha una dimensione e’ linea, quella che ne ha due e’ superficie, quella che ne ha tre e’ corpo, e al di fuori di questo non si hanno altre grandezze......” . Quindi:

1. Un punto non ha alcuna dimensione: ne’ lunghezza, ne’ larghezza ne’ altezza.

2. Una retta ha una sola dimensione: la lunghezza che si estende fino all’infinito in entrambe le direzioni.

3. Il piano ha due dimensioni: lunghezza e larghezza, e si estende fino all’infinito in entrambe le direzioni.

4. Lo spazio ha tre dimensioni: lunghezza, larghezza e altezza che si estendono fino all’infinito in tutte e tre le direzioni.

Ma c’e’ una definizione matematica di dimensione?

La risposta e’ si. Con un esempio cerchiamo di arrivare all’equazione che ci permette di ricavare questa grandezza.

Supponiamo di avere un cubo come quello mostrato in figura 3, e supponiamo di raddoppiare la lunghezza del suo lato. Così facendo otteniamo 8 copie dell’originale, cioè: 8=23. Ma il 3 altro non e’ che la dimensione dello spazio. La stessa cosa per esempio e’ vera nel caso di un rettangolo e di una retta.

 

Figura 3. Raddoppiando la lunghezza del lato di un cubo si ottengono 8 copie dell’originale.

 

Quindi in generale abbiamo:

N=SD

dove N e’ il numero di copie dell’oggetto che otteniamo ingrandendo un suo lato di S volte e D la dimensione dell’oggetto. Se, per esempio, ingrandiamo ogni lato di un rettangolo 5 volte, otteniamo 25 copie dell’originale e quindi la dimensione D e’ quel numero con cui elevando il 5 otteniamo 25, cioè D=2. Adesso siamo pronti per calcolare la dimensione di un oggetto frattale. Allo scopo utilizzeremo il triangolo di Sierpinski che e’ un frattale che si costruisce nel seguente modo. Iniziamo con un triangolo.

Disegniamo le linee che uniscono i punti centrali di ogni lato e rimuoviamo il triangolo che si forma al centro.

All’interno di questo triangolo, abbiamo 3 nuovi triangoli.

Ripetiamo l’operazione precedente per questi 3 triangoli (cioè uniamo tra loro i punti centrali di ogni lato del triangolo e rimuoviamo il triangolo centrale). Il risultato e’ il seguente.

Se ripetiamo l’operazione diverse volte otteniamo il triangolo di Sierpinski.

Calcoliamo, adesso, la dimensione di questo oggetto osservando che raddoppiando la lunghezza del lato del triangolo abbiamo tre copie esatte dell’originale e questo a qualsiasi passo della costruzione.

Quindi, sostituendo questi numeri all’interno dell’equazione N=SD , otteniamo:

3=2D

Questa equazione può essere risolta utilizzando il concetto di logaritmo e cioè:

Log(3)=Log(2D)=Dlog(2)    da cui si ricava    D=Log(3)/Log(2)=1.585

La dimensione del triangolo di Sierpinski e’ data da un numero che sta tra 1 e 2. Cioè questo oggetto geometrico e’ qualche cosa che sta quasi a metà tra una retta e un piano. La geometria frattale non ‘e semplicemente il frutto di una speculazione teorica, ma trova anche interessanti applicazioni nella realtà. Nel corpo umano strutture riconducibili a frattali sono osservabili nelle reti di vasi sanguigni, di fibre nervose e di strutture canalizzate. Il sistema frattale più studiato e' l'albero bronchiale, che trasporta i gas respiratori da e verso i polmoni (figura 4). Nel cuore, le strutture frattali hanno un ruolo vitale nella meccanica della contrazione e nella conduzione dello stimolo elettrico eccitatorio. Una rete frattale di arterie e vene coronarie trasporta sangue da e verso il cuore (figura 5). Recentemente la geometria frattale e’ stata utilizzata anche per spiegare alcune anomalie del flusso sanguigno coronarico, la cui interruzione può causare l'infarto miocardico.

 

Figura 4. La struttura frattale dei bronchi.

 

Figura 5. La struttura frattale del cuore.

Si cerca di applicare la matematica dei frattali anche allo studio dei tumori, in quanto, si e’ scoperto che nell’organismo colpito da tale patologia tendono a formarsi vasi sanguigni che nutrono le cellule tumorali seguendo uno schema frattale (figura 6).

 

Figura 6. La struttura frattale dei vasi sanguigni di un tumore.

Oggi, nonostante la migliorata conoscenza dei meccanismi che regolano i tumori, la maggior parte delle diagnosi ancora si basa sull’ispezione visiva delle immagini radiologiche. Queste immagini, ovviamente vengono interpretate in modo qualitativo da medici che sono stati addestrati a classificare strutture irregolari. Un approccio piu’ riproducibile e quantitativo, da affiancare all’osservazione del medico, puo’ essere quello dell’analisi delle immagini con software adeguati. E qui entra in gioco la geometria frattale che viene utilizzata per misurare l’irregolarita’ delle strutture tumorali. Come gia’ detto, si e’ scoperto che la vascolarizzazione dei tumori, e’ piu’ caotica di quella normale (figura 7). Da esperimenti effettuati, si e’ visto che i vasi sanguigni dei tumori hanno dimensioni intorno ad 1.89, mentre le normali arterie e vene hanno una dimensione frattale di 1.70. La dimensione frattale dei tumori puo’ essere ottenuta usando un processo di crescita statistica conosciuto come percolazione invasiva. La percolazione normalmente, viene associata con il movimento dell’acqua attraverso le fessure del suolo. In termini tecnici, una percolazione invasiva e’ un algoritmo che modella l’espansione di una rete attraverso un mezzo con eterogeneita’ resistive distribuite in modo casuale. La rete (network) risultante si espande sempre nei siti meno resistenti, generando strutture con vuoti e strutture tortuose su larga scala. Nel 1995 alcuni ricercatori hanno dimostrato che la percolazione invasiva riusciva a mimare correttamente la transizione da una normale vascolarizzazione a quella irregolare di un tumore.

 

Figura 7. Immagine di arterie e vene normali A, normali capillari sottocutanei B, vascolarizzazione di un tumore C.

Nella figura 8, vengono riportate alcune fasi della crescita di una percolazione invasiva. I quadratini con diversi colori rappresentano la diversa intensita’ delle eterogeneita’. Il nero corrisponde alla massima intensita’ e viceversa il bianco alla minima. Il punto nero rappresenta la cella iniziale e i vari segmenti la rete percolativa. Il punto iniziale si muove orizzontalmente o verticalmente di un solo passo alla volta e nella cella con minima intensita’ (A). Nella figura B viene riportata la rete percolativa dopo un certo numero di passi. Notare la somiglianza con la vascolarizzazione di un tumore.

 

’Figura 8. Simulazione percolazione invasiva. Per i dettagli vedere testo.

Anche nel mondo vegetale si trovano svariati esempi di strutture frattali: i rami delle piante, le radici di un albero, le felci (figura 13), le nuvole, le ramificazioni di un fulmine (figura 14), i fiocchi di neve (vedi figura 15), e addirittura i raggruppamenti delle galassie nell’universo.

 

Figura 13. Albero e felci frattali.

 

Figura 14. Sulla sinistra e al centro due tipologie di fulmini. Sulla destra un frattale ramificato.

 

Figura 15. Fiocco di neve frattale. Le diverse fasi di costruzione di questo oggetto.

Cerchiamo di approfondire un attimo quest’ultimo concetto.

Se si osserva il cielo stellato, ad un primo sguardo sembra che le stelle ricoprano uniformemente la volta celeste. Ma restando per un po’ al buio l’occhio subito comincia a distinguere una zona del cielo piu’ luminosa e densa di quelle circostanti: si tratta della Via Lattea, la nostra Galassia. Come tutti sapranno, le galassie sono insieme di miliardi di stelle tenute insieme dalla gravita’. Sono un po’ come le cellule del nostro organismo. Queste galassie, a loro volta, formano degli ammassi di galassie che a loro volta sembrano organizzati in superammassi (vedi figura 16). E’ lecito chiedersi, allora, se questo gioco delle matrioske sia presente su scale sempre piu’ grandi.

 

Figura 16. L’universo ripreso dal telescopio Hubble.

Se cosi fosse, questo vorrebbe dire che la materia luminosa nell’universo non sarebbe distribuita in modo uniforme, bensi’ in un alternanza di spazi pieni e di spazi vuoti, cioe’ un universo frattale. Questa tesi, sostenuta oggi da diversi cosmologi, e’ stata avanzata per la prima volta dal professore Luciano Pietronero dell’Universita’ la Sapienza di Roma. Osservando la figura 17, si puo’ notare come la distribuzione delle galassie alterna addensamenti e vuoti a tutte le scale di lunghezza a noi accessibili con gli strumenti che oggi sono a nostra disposizione. Questa e’ precisamente la caratteristica di una struttura frattale.

 

Figura 17. La trama frattale delle galassie

Ma nessuno ci puo’ assicurare che la distribuzione delle galassie non diventi omogenea aumentando il volume dell’universo osservato.La questione dell’omogeneita’ della materia luminosa e’ di cruciale importanza per la cosmologia. Proprio sull’omogeneita’ si basa infatti uno dei principi piu’ importanti della cosmologia attuale: il principio cosmologico.

Di cosa si tratta?

Il modello cosmologico standard, una versione del quale prevede il Big Bang, e’ quello che ad oggi riesce meglio a spiegare l’origine e l’evoluzione dell’universo. Quindi, e’ chiaro, che se la distribuzione della materia si rivelasse frattale a tutte le scale, il modello cosmologico standard andrebbe rivisto completamente. Comunque, la maggior parte degli scienziati sono convinti che le galassie piu’ vicine a noi hanno effettivamente una distribuzione frattale, che pero’ tende all’omogeneita’ man mano che ci si addentra in regioni dell’universo sempre piu’ lontane nello spazio e nel tempo. Insomma, l’universo sarebbe comunque omogeneo su grande scala.

Luciano Pietronero e i suoi colleghi, tuttavia, ritengono che alla base dell’approccio di questi scienziati ci sia una certa riluttanza a mettere in discussione il Principio cosmologico. Puo’ essere utile, allora, tentare di capire come e perche’ si siano formate le strutture luminose che osserviamo. Indicazioni importanti, probabilmente non verranno solo dalle ricerche nell’infinitamente grande, ma anche da quelle nell’infinitamente piccolo, come gli esperimenti con l’LHC (Large Hadron Collider) che sono in corso al CERN di Ginevra. In uno di questi esperimenti si cerchera’ di riprodurre le condizioni iniziali del Big Bang.

sabato 6 aprile 2013

Numeri geometrici

 
Possono i numeri avere una forma geometrica?
Anche se e’ chiaro di no, alcuni di essi possono essere rappresentati da punti disposti come figure geometriche regolari. Questi numeri vengono chiamati numeri figurati o numeri poligonali.
I numeri figurati più conosciuti sono i numeri quadrati, cioè i numeri 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,…….
Essi si chiamano così perché possono essere disposti all’interno di quadrati come quelli riportati sotto.


Gli angoli rossi sono quelli che gli antichi Greci chiamavano “gnomon”. Ogni quadrato e’ formato dal quadrato precedente indicato in blu più lo gnomon. I numeri appartenenti allo gnomon dei numeri quadrati sono: 1, 3, 5, 7, 9, 11,…. Praticamente i numeri dispari.
Da qui discende facilmente che l'ennesimo numero quadrato e’ dato dalla somma del quadrato precedente piu' i numeri dispari consecutivi. Allo stesso modo e’ possibile trasformare in termini matematici quello che abbiamo visto con la rappresentazione geometrica, cioè che e’ vera la seguente formula ricorsiva per i numeri quadrati Q:

Qk+1=Qk+2k+1

dove k=0, 1, 2, 3, 4…. e Q0=0
Il numero di rappresentazioni di un numero n tramite k quadrati, distinguendo il segno e l’ordine, viene indicato con rk(n); si tratta di una funzione di n chiamata la funzione della somma dei quadrati. Per esempio, consideriamo il numero di modi in cui e’ possibile rappresentare il numero 5 come somma di 2 quadrati:


e quindi r2(5)=8. Allo stesso modo il numero 4 puo’ essere scritto come somma di tre quadrati come segue:


e quindi r2(4)=6.
Diversi grandi matematici hanno contribuito a determinare un’espressione analitica di questa funzione. Jacobi ci riusci’ nel 1829 per k=2,4,6, e 8. La soluzione per k=10 e 12, invece, fu trovata da Liouville e in seguito da Eisenstein. Glaisher nel 1907, riusci a sviluppare una tabella di  r2s(n) per 2s fino a 18. Il grande Ramanujan, estese il risultato di Glaisher fino a 2s=24.
La funzione  r2(n) a volte indicata come r(n) e’ intimamente connessa al problema del cerchio di Gauss.

Questo problema consiste nel contare, per un cerchio di raggio r, il numero dei punti del reticolo N(r), all’interno dei confini del cerchio (confine incluso) con centro nell’origine (vedi figura 1).

 

Figura 1: Problema del cerchio di Gauss.


L’esatta soluzione di questo problema e’ data dalla formula:


dove la funzione


indica la parte intera del numero n. I primi valori di N(r) per r=0,1,2,3…. sono 1, 5, 13, 29, 49, 81, 113, 149…….
La serie N(r) e’ legata alla funzione della somma di due quadrati r(n) in quanto si puo’ dimostrare che:


In figura 2, viene riportata la rappresentazione della funzione N(r)/r2  in funzione di r. Osservare l’andamento asintotico della funzione dopo aver attraversato una zona per bassi valori di r con grosse oscillazioni.

 

Figura 2: Andamento del rapporto N(r) e il quadrato di r


I numeri 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, ... sono invece i cosiddetti numeri triangolari in quanto possono essere rappresentati tramite triangoli regolari.


Se con Tk indichiamo il k-esimo numero triangolare si può verificare che vale la seguente relazione:


con T0=0.
Questa relazione ricorsiva può essere espansa per dimostrare che il k-esimo numero triangolare altro non e’ che la somma di tutti numeri da 1 a k.


Poiché la somma dei primi k numeri e’ data da k(k+1)/2 possiamo scrivere che:

Osservare che a partire dai numeri triangolari si possono ottenere i numeri quadrati. E’ facile, infatti, dimostrare che:


Schematicamente questa relazione può essere rappresentata nel seguente modo:
Qui l’n-1_esimo numero triangolare e’ rappresentato dai triangoli bianchi, l’n_simo numero triangolare dal numero di triangoli neri mentre il numero totale dei triangoli e’ l’ennesimo numero quadrato.
Un'altra relazione dimostrata da Conway e Guy nel 1996, lega i numeri triangolari a quelli quadrati.

Si può verificare che essa e’ vera osservando che e’ sempre possibile dividere un quadrato in 8 triangoli a parte un tassello.


Nel 1638, Fermat propose che ogni numero intero positivo, e’ la somma di almeno tre numeri triangolari, quattro numeri quadrati, cinque numeri pentagonali e cosi via.
Egli riportò di avere una dimostrazione, anche se essa non e’ mai stata trovata.
In seguito Gauss provò che il caso dei numeri triangolari era vero e annoto’ l’evento sul suo diario (10 Luglio 1796) con la scritta ormai famosa:
 

Il caso dei numeri quadrati fu dimostrato da Jacobi e Lagrange nel 1772, mentre l’intero teorema e’ stato dimostrato solo nel 1813 da Cauchy.
Allo stesso modo dei numeri triangolari e numeri quadrati e’ possibile costruire numeri pentagonali, esagonali, ettagonali ….. In generale possiamo parlare di numeri poligonali. Questi numeri sono caratterizzati da due parametri: il numero E dei vertici e il numero k del rango (il primo, secondo, terzo etc). Il minimo valore per questi due parametri e’ 3 ed 1 rispettivamente.
Con G(E,k) indichiamo il numero poligonale con E vertici e allo stadio k.

I numeri:

G(3,k) rappresentano i numeri triangolari
G(4,k) i numeri quadrati
G(5,k) i numeri pentagonali
G(6,k) i numeri esagonali
G(7,k) i numeri ettagonali
G(8,k) i numeri ottagonali

e cosi via. I numeri poligonali sono numeri i cui punti che li rappresentano possono essere disposti all’interno di poligoni regolari. Allo stadio k=1 ogni numero poligonale e’ costituito da un solo punto, cioè G(E,1)=1. Per k maggiore o uguale a 2   il numero poligonale appartenente alla famiglia G(E,k) evolve da quello precedente G(E,k-1) mettendo insieme una “catena” aperta di nuovi punti ai k-2 lati del vecchio pattern cosicché i vertici andranno a formare un nuovo poligono con esattamente k punti su ognuno dei suoi lati.
Nei seguenti esempi in blu vengono riportati i precedenti pattern e in rosso le catene aperte dei nuovi punti.

Esempio di numeri pentagonali.
Esempio di numeri esagonali.


Da queste figure si può facilmente dimostrare che:

giovedì 7 marzo 2013

La persistenza dei numeri e altre amenita’ dall’enciclopedia OEIS

   

Sicuramente sara’ capitato a molti di voi che amano la matematica di imbattersi almeno una volta nel sito del Dr. Neil Sloane dei Laboratori AT&T del New Jersey in America. Si tratta del piu’ grande data base di numeri esistente al mondo. Si chiama “On line Encyclopedia of Integer Sequences” con circa 200.000 sequenze numeriche. Questo l’indirizzo web. Una sequenza e’ una lista di numeri, eventualmente infinita, che puo’ essere calcolata utilizzando delle semplici regole.

La sequenza piu’ famosa e’ sicuramente quella di Fibonacci dove ogni termine e’ dato dalla somma dei due termini precedenti: 1, 1, 2, 3, 5, 8, 13, 21, 34,.....

Il Dr. Sloane ha lavorato a questa enciclopedia per circa 40 anni ed oggi e’ consultata gratuitamente tramite il web da diversi scienziati nel mondo. Gli astronomi, per esempio, che cercano possibili vite extra-terresti analizzando i segnali radio che arrivano dall’Universo, la consultano per capire se si tratta di una sequenza casuale o no.

Essa aiuta anche le compagnie di telefoni mobili quando cercano di eliminare le interferenza tra diverse chiamate. In effetti, quando facciamo una chiamata, ci viene assegnata una certa frequenza che non deve interferire con quelle di altre persone.

Frequenze basate su sequenze di numeri che non si ripetono mai, individuabili grazie al data base di Sloane, garantiscono al cliente l’assenza di disturbi di interferenza.

Un altro aiuto viene dato agli esperti di crittografia che utilizzano la fattorizzazione dei numeri primi per trasmettere messaggi segreti.

All’interno di questo grande contenitore online, si possono trovare successioni di numeri di diverso tipo. Da quelle semplici a quelle difficili da calcolare, da quelle ordinate a quelle disordinate, da quelle basate sul calcolo combinatorio  a quelle ricreazionali. Anche io negli anni passati ho dato un piccolo contributo a questa enciclopedia  inserendo alcune mie sequenze che potete consultare  a questo link.

Neil Sloane ha una lista di quelle che lui ritiene le sue favorite. Vediamo quali sono.

La prima e’ la sequenza di Recaman, che inizia come la sequenza di Fibonacci per poi diventare significativamente diversa. Questa sequenza e’ molto difficile da analizzare in quanto non mostra alcuna regolarita’, non aumenta, non diminuisce e ne’ oscilla in modo regolare.

Se provassimo a graficare i numeri di Fibonacci, questi crescerebbero in modo prevedibile, con una velocita’ ben determinata. La sequenza di Recaman, invece, barcolla come un ubriaco, andando su e giu’ in modo del tutto casuale. Il suo grafico assomiglia allo scarabocchio di un bambino.

La regola alla base e’ molto semplice:

Supponendo di partire con 1, si ottiene facilmente:

1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, .......

Nel database di Sloane, in genere, le sequenze che dipendono dalla scelta della base non vengono mantenute anche se ci sono delle eccezioni. Partiamo, per esempio, con un numero n; se esso e’ palindromo (cioe’ se si legge allo stesso modo da sinistra a destra e viceversa, come 121, 25652...) ci fermiamo; altrimenti aggiungiamo il numero n a se stesso con le cifre al contrario. Ripetiamo questa operazione fino a quando non raggiungiamo un numero palindromo, oppure assegniamo -1 se non lo raggiungeremo mai. Partendo con 19, otteniamo:

19 –> 19+91=110 –>110+011=121

che e’ un palindromo, e quindi ci fermiamo e il diciannovesimo termine della sequenza sara’ 121. La sequenza inizia con:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 33, 44, 55, 66, 77, 88, 99, 121, 22, 33, 22, 55, 66, 77, . . . .

E se partiamo col numero 196 cosa succede?. In questo caso otteniamo:

196, 887, 1675, 7436, 13783, 52514, 94039, 187088, 1067869, 10755470, 18211171, . . . .

che sembra non raggiungere mai un numero palindromo. Sarebbe interessante avere una dimostrazione di cio’, ma al momento non esiste. Questo e’ uno di quei problemi che sembrano troppo difficili da risolvere per la matematica del XXI secolo.

Un’altra sequenza molto amata da Sloane, e’ quella chiamata “Powertrains” . In questo caso ogni termine della sequenza e’ legato al numero di passaggi necessari per arrivare ad un numero ad una sola cifra partendo da un numero qualsiasi n e moltiplicando tra loro le sue cifre. Partendo con 679, per esempio, sono necessari 5 passaggi per arrivare a 6:

679 –> 378 –> 168 –> 48 –> 32 –>6

Il numero di passaggi e’ chiamato la persistenza del numero; nel caso di 679 la persistenza e’ uguale a 5. I piu’ piccoli numeri naturali con persistenza 1,2,3,4,.... sono dati dalla sequenza:

10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 277777788888899

Sloane, in un articolo del 1973 ha congetturato che questa sequenza e’ finita e fino ad oggi non e’ stato trovato nessun numero naturale con persistenza maggiore di 11.

Tutti sono invitati alla ricerca. Qualcuno dei lettori potrebbe scontrarsi con un numero n con persistenza maggiore di 11 ed entrare nel guinness dei primati della matematica.

Nel 2007, John Conway, l’autore del gioco della Vita, ha proposto una variazione al concetto di persistenza suggerendo di considerare nel caso in cui un numero n ha un’espansione decimale del tipo abcd..., il numero abcd.... che termina in un esponente o una base a seconda che il numero di cifre contenute in n e’ pari o dispari. Si assume che 00 sia uguale ad 1. Questa sequenza comincia con:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625,…

e il suo grafico e’ mostrato in figura 1.

Figura1: Rappresentazione della sequenza powertrain. Sull’asse y e’ riportato il logaritmo di ogni termine della sequenza piu’ uno.

Se consideriamo la mappa n à Powertrain(n) ci accorgiamo che alcuni punti sono dei punti fissi (o attrattori) come per esempio 2592 essendo 25·34 = 2592 –> 25·92 = 2592. La successione degli attrattori  del Powertrain e’ data da:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2592, 24547284284866560000000000

e Sloane ha congetturato che non ci sono altri termini. Di sicuro questo e’ vero per 10100  in quanto e’ stato verificato con una ricerca esaustiva al computer. Ancora una volta regole molto semplici possono dar origine a questioni che potrebbero rimanere senza una risposta per secoli.

Un altra sequenza interessante, che solleva un problema veramente difficile da risolvere e’ la cosiddetta sequenza di Lagarias, definita come:

dove H(n) e’ l’ennesimo numero armonico dato da:

e σ(n) la somma dei divisori di n (per esempio σ(6)=12 in quanto i divisori di 6 sono 1, 2, 3, 6). I primi termini sono riportati nell’ enciclopedia di Sloane e sono:

0, 0, 1, 0, 4, 0, 7, 2, 7, 5, 13, 0, 17, 9, 12, 8, 23, 5, 27, 8, 21, 20, 34, 1, 33, 25, . . .

Jeff Lagarias, da cui la sequenza prende il nome, nel 2001 ha dimostrato che se a(n) e’ sempre maggiore o uguale a zero, questo equivale a dire che la famosa ipotesi di Riemann,  e’ vera. In figura 2, viene mostrata un’immagine dell’andamento di questa sequenza per diversi valori di n.

Figura2: Rappresentazione della sequenza di Lagarias.

Continuiamo il nostro viaggio e vediamo quale e’ il nostro prossimo incontro. Si tratta della cosiddetta sequenza EKG. I primi due termini sono 1 e 2, e i termini successivi vengono calcolati considerando il numero positivo piu’ piccolo non presente gia’ nella successione e che ha un fattore comune non banale con il termine precedente. Poiche’ a(2)=2, allora a(3) deve essere pari, ed e’ quindi uguale a 4. a(4) deve avere un fattore comune con 4 e quindi non puo’ che essere uguale a 6. Il piu’ piccolo numero non presente nella sequenza e che ha un fattore in comune con 6 e’ 3, cosicche’ a(5)=3 e cosi’ via. I primi 18 termini di questa successione sono:

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20……..

E’ chiaro che se nella sequenza compare un numeri primo p, allora il termine immediatamente precedente o immediatamente successivo sara’ uguale a 2p. Inoltre, Lagarias, Rains e Sloane hanno notato che ogni numero primo p e’ sempre preceduto da 2p e seguito da 3p. Questo e’ stato provato essere vero per i primi 10.000.000 termini della successione. Ma non sono riusciti a trovare una dimostrazione di cio’. Ancora un altro problema aperto su cui potersi cimentare. La sequenza e’ stata chiamata EKG in quanto essa assomiglia ad un elettrocardiogramma quando riportata su grafico come mostrato in figura3.

Figura3: I primi 100 termini della sequenza EKG sopra, e i termini da 800 a 1000 sotto.

Sebbene i primi termini di questa sequenza sembrano ondeggiare, se grafichiamo gli stessi termini della figura 3, senza unire i punti tra di loro con delle linee, otteniamo l’immagine della figura 4.

  Figura4: I primi 1000 termini della sequenza EKG senza unire i punti successivi.

Si puo’ vedere come i valori della sequenza si raggruppano lungo tre linee quasi rette. Questo e’ un comportamento simile a quello dei numeri primi, che inizialmente sembrano imprevedibili, per poi tendere sempre piu’ ad una curva data da ~n·ln(n). C’e’ una precisa congettura per quanto riguarda le tre rette della figura 4, che stabilisce che la maggior parte dei valori della sequenza EKG si stabilizzano intorno alla linea a(n)~n(1+1/(3ln(3)) centrale, ed occasionalmente solo quando a(n)=p, cioe’ in corrispondenza dei numeri primi, vengono prodotti i punti della linea al di sopra a(n)=3p e al di sotto a(n)=p di quella centrale. E’ stato dimostrato che la sequenza ha essenzialmente una crescita lineare nel senso che esistono due costanti c1 e c2 tali che c1n<a(n)<c2n per tutti i valori di n. Questo e’ tutto quello che si conosce sulla sequenza EKG. Come si intuisce c’e’ ancora tanto lavoro da fare.

E non finisce qui. La prossima sequenza non e’ da meno dell’EKG. Semplice da definire ma difficile da analizzare e tante questioni ancora aperte su cui poter lavorare. Si tratta del problema del quadrato approssimato. Prima di tutto indichiamo col simbolo I(x), il piu’ piccolo intero maggiore o uguale a x. Se partiamo con qualsiasi frazione piu’ grande di 1, come per esempio 8/7, e applichiamo continuamente il prodotto x·I(x) e’ possibile arrivare ad un numero intero.

Poiche’ 8/7=1.142.., I(8/7)=2 e quindi x·I(x)=16/7. Riapplicando lo stesso procedimento alla frazione 16/7 si ottiene 48/7 e poi 48. Per arrivare ad un numero intero sono stati necessari 3 passaggi. La questione che sorge e’: per qualsiasi frazione iniziale, e’ sempre possibile raggiungere un numero intero? Lagarias e Sloane, in un articolo pubblicato sul giornale Experimental Math del 2004, hanno mostrato che quasi tutte le frazioni maggiori di 1 raggiungono un numero intero, e che se il denominatore e’ uguale a 2 allora tutte le frazioni maggiori di 1 raggiungono un numero intero. Comunque una prova completa ancora non esiste. Il problema ha delle similitudini con quello di Collatz che abbiamo analizzato in uno dei post  precedenti, e questo spiega la difficolta’ nel risolverlo.

I numeri coinvolti sono numeri che crescono velocemente. Se partiamo dalla frazione 6/5, per esempio, l’applicazione successiva del prodotto x·I(x), genera la sequenza:

che raggiunge un numero intero con 57735 cifre, dopo 18 passaggi. Se la frazione iniziale ha il denominatore uguale a 2, allora e’ possibile determinare in quanti passaggi si raggiunge un numero intero. Ma se il denominatore e’ gia’ uguale a 3, non sappiamo cosa accade.

Partendo con frazioni della forma (k+1)/k, con k un qualsiasi numero intero, sembra necessario un numero di passaggi veramente lungo primo di approdare ad un numero intero. E’ divertente notare che se k=199, la frazione 200/199 raggiunge un numero intero enorme, approssimativamente uguale a :

cioe’ un numero con circa 10435 cifre. Diversamente da quanto credono la maggior parte delle persone molta della matematica utilizzata per puri scopi teorici, trova poi applicazione nel mondo di tutti i giorni. E’ il caso del classico problema della “dissezione” che e’ stato applicato con successo nel campo delle comunicazioni ottiche.

Dato un poligono con n lati, e’ sempre possibile tagliarlo in un numero finito di pezzi che possono essere arrangiati, senza essere sovrapposti, a formare un quadrato della stessa area.

Ma qual’e’ il minimo numero d(n) di pezzi richiesti?

Per il caso n=3, quello che cerchiamo e’ il minimo numero di pezzi in cui e’ possibile dividere un triangolo equilatero in un quadrato. Al momento il numero minimo conosciuto e’ 4, come mostrato da Dudeney nel 1902 (vedi figura 5). E’ improbabile che si possa fare meglio di cosi ma fino ad oggi nessuno e’ riuscito a provarlo.

Figura5: Un triangolo puo’ essere dissezionato in 4 pezzi che possono poi essere arrangiati a formare un quadrato con la stessa area del triangolo.

Nessuno conosce con certezza i valori di d(n), eccetto chiaramente d(4) che e’ uguale a 1. Si conoscono solo i limiti superiori riportati come sempre nel sito web di Sloane:

4, 1, 6, 5, 7, 5, 9, 7,….

Qualcuno vuole tentare ad abbassare questi limiti?

Esistono altre due sequenze che nascono da due problemi di analisi combinatoria molto interessanti. Il primo si chiama il problema dei “meandri” e il secondo il problema dei “francobolli”. Entrambe queste sequenze di numeri, sono fondamentali, facilmente descrivibili, compaiono in diverse parti della matematica e sono complicate da calcolare.

Nel caso dei francobolli la questione e’ la seguente.

Consideriamo una striscia di francobolli, come mostrato in figura 6. Ci sono n francobolli numerati con 1,2,3,4...n a partire dalla sinistra e ognuno di essi ha una faccia superiore in verde e una faccia inferiore in nero. Tra due francobolli c’e’ una piccola striscia perforata (colore viola nella figura) che facilita la divisione dei francobolli.

Figura6: Striscia di francobolli.

Una tale striscia di francobolli puo’ essere piegata lungo le perforazioni in diversi modi per creare una pila di n francobolli. Assumiamo che le perforazioni siano perfettamente elastiche e quindi possano essere stirate a qualsiasi distanza. Quanti modi diversi esistono per piegare una tale striscia?

Di seguito viene riportato l’esempio di tutti i possibili piegamenti che si possono ottenere con 4 francobolli.

Alcuni di queste configurazioni sono quasi identiche ad altre, come per esempio, 1234 e 4321. Con lo scopo di rimuovere alcune delle simmetrie, e’ possibile restringere gli orientamenti a quelli in cui il primo francobollo nella sequenza ha il valore piu’ basso dell’ultimo. In questo modo 1234 sara’ permesso mentre 4321 no. Qui sotto viene mostrato il diagramma dei possibili piegamenti dei francobolli con lunghezza 4 rimuovendo le sequenze non permesse. Ci sono esattamente la meta’ degli oggetti del caso precedente.

  Comunque in questo diagramma, ancora esiste un altro tipo di simmetria come quella tra 3214 e 1432. Rimuovendo anche questo tipo di simmetria quello che rimane e’ riportato nell’immagine che segue.

In definitiva la sequenza e’ data da:

1, 1, 2, 5, 14, 38, 120, 353, 1148, 3527, ……

L’altra sequenza, quella dei meandri parte dalla questione: in quanti modi diversi un fiume che scorre da SE a NE, attraversa una strada n volte?

Per n=5 ci sono 8 modi diversi di attraversamento come mostrato nello schema sottostante.

I termini di questa sequenza sono:

1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, ….

Anche se non sono state passate in rassegna tutte le sequenze favorite di Sloane, ci fermiamo qui invitando il lettore interessato a visitare il sito online, a proporre nuove sequenze e a lavorare sui quesiti ancora aperti. Ottima palestra per chi vuole mantenere allenato il proprio cervello.

http://www.wikio.it