venerdì 2 maggio 2014

Terremoti nel cervello. Legge di potenza per l’epilessia.

 

Verso la fine degli anni ottanta, il neurologo Ivan Osorio dopo anni di ricerca, si rese conto che non si poteva  capire a fondo cosa determinasse nel cervello l’aumento improvviso dell’attività elettrica conosciuta come attacco epilettico.

Cominciò così a guardarsi intorno, al di fuori del campo medico per cercare di trovare delle similitudini con altri fenomeni. Fu cosi che scoprì per caso la forte somiglianza tra gli attacchi epilettici e i terremoti e subito iniziò a studiare le leggi che regolano quest’ultimi per cercare di gettare nuova luce su cosa avviene nel cervello durante gli attacchi di epilessia. Questo collegamento fu trovato indirettamente, leggendo un articolo pubblicato da uno psicologo su Nature nel 1967, Graham Goddard, che aveva descritto un particolare fenomeno chiamato “kindling”.

Questo scienziato aveva scoperto che stimolando continuamente il cervello di alcuni ratti con impulsi di basso voltaggio, una volta che si innescava un attacco epilettico, c’era bisogno di una stimolazione elettrica minore rispetto alla precedente, per indurre un secondo attacco epilettico. Goddard chiamò questo fenomeno “kindling” in quanto gli ricordava quello che succede, quando si vuole accendere un gran fuoco e si parte con l’usare gradualmente sempre più ramoscelli. All’inizio c’è bisogno di tanti ramoscelli, ma poi quando il fuoco è andato, basta l’aggiunta di pochi ramoscelli per tenerlo acceso.

Si tratta di un fenomeno dove lentamente c’è un accumulo di energia che poi viene rilasciata istantaneamente. I vari impulsi elettrici creano piccoli attacchi epilettici, che accumulandosi pian piano portano poi ad una violenta scarica. Ricorrendo ad un’altra analogia, e’ come avere un mucchietto di sabbia dove  l’aggiunta di un unico granello, genera delle micro-valanghe (piccoli attacchi epilettici) e porta gradualmente il sistema in uno stato critico. A quel punto l’arrivo di un nuovo granello di sabbia può generare una valanga di grandi dimensioni (scarica epilettica violenta).

Nell’ambito dei sistemi complessi, questo rilascio improvviso di energia si chiama ‘rilassamento’. I tempi che intercorrono tra due eventi di rilassamento, in genere, sono molto lunghi, e la quantità di energia rilasciata è cosi grande che può avere delle conseguenze catastrofiche. In base a queste considerazioni è possibile considerare gli attacchi epilettici come degli eventi di rilassamento del cervello?

I sistemi complessi (come i terremoti, internet, i mercati finanziari ...) sembrano mostrare tutti la stessa legge di rilassamento. Ogni volta che all’interno di un sistema complesso, c’è un turbamento, una scossa, un evento estremo che sposta il sistema dal suo stato tipico, esso si rilassa seguendo una legge ben precisa: la legge di Omori.

Omori trovò la sua legge analizzando gli eventi sismici. Da allora in poi i ricercatori hanno verificato che tutti i sistemi complessi sembrano mostrare la stessa legge indipendentemente dal contesto. La legge è una legge di potenza con un andamento del tipo t, dove t è il tempo trascorso rispetto all’evento catastrofico ed alfa una costante. Nel caso dei terremoti, per esempio, la legge di Omori stabilisce che il numero di eventi sismici dopo la scossa principale per unità di tempo, decresce nel tempo con legge di potenza. Questo significa che subito dopo la scossa principale ci sarà un numero elevato di scosse di minore intensità e che questo numero poi rapidamente decadrà andando a zero ma molto, molto lentamente. Ecco perchè anche dopo mesi da una prima scossa si hanno ancora eventi sismici significativi. Il sistema per ritornare al suo stato iniziale, cioè a quello esistente prima della scossa, impiega un tempo lunghissimo. Nella figura 1, viene mostrato il numero di scosse nel tempo per il terremoto che ha colpito l’Aquila il 6 Aprile del 2009. Si può vedere chiaramente l’andamento previsto da Omori (curva color fucsia) con un esponente pari a circa 0.4.

 

clip_image004

Figura 1 Legge di Omori per il terremoto dell’Aquila dell’Aprile 2009.

 

 

 

clip_image006

Figura 2 Legge analoga a quella di Omori per l’andamento della magnitudine massima giornaliera del terremoto dell’Aquila dell’Aprile 2009.

 

Nella figura 2, è riportata invece l’andamento giornaliero della massima magnitudo registrata. Anche in questo caso si può notare un andamento simile alla legge di Omori con un esponente pari a 0.185.

Ma ritorniamo adesso all’epilessia.

Osorio e il matematico dell’Università del Kansas, Mark Frei, avevano presentato la loro idea a diversi congressi, fino a, quando incontrarono il neurologo John Milton, che gli suggerì di confrontare gli attacchi epilettici ai sistemi complessi incluso i terremoti. L’idea era semplice: usare le leggi di un fenomeno per risolvere i misteri di un altro.

Lo stesso Milton favorì l’incontro di Frei e Osori con il geofisico Didier Sorniette, esperto di teoria delle catastrofi e dei sistemi complessi, per cercare di applicare i concetti fisici sviluppati in ambiti diversi, alle previsioni degli attacchi epilettici. Questo team di ricercatori ha eseguito un’analisi quantitativa, confrontando 16.032 casi di attacchi epilettici e 81.977 eventi sismici con magnitudo maggiore di 2.3. Gli attacchi epilettici sono stati definiti come il rapporto adimensionale dell’attività elettrica del cervello in una particolare banda di frequenze con un valore superiore a 22 ed una durata di almeno 0.84 secondi. Da questi dati, sono poi stati estratti due parametri caratteristici: l’energia E (intesa come il prodotto del picco dell’attacco epilettico per la sua durata) e l’intervallo di tempo tra due attacchi consecutivi. Per i terremoti, invece, è stato considerato il momento sismico definito come:

S~101.5M

dove M è la magnitudo del sisma. Nella figura 3 è riportato il confronto tra un segnale epilettico e quello di un sisma. Notare la forte somiglianza tra i due. Stessa cosa per la figura 4, dove viene riportata la distribuzione di probabilità (PDF) per l’energia nel caso degli attacchi epilettici e il momento sismico S dei terremoti. Per entrambi i sistemi, la probabilità che un evento abbia un’energia o un momento sismico maggiore di x è proporzionale a  x-β  dove β~2/3.

Questa distribuzione si differenzia da quella Gaussiana per la presenza di una lunga coda a destra, che si riflette nella presenza di eventi estremi che accadono con una probabilità non trascurabile. Questi eventi estremi si trovano a diverse deviazioni standard dal valore medio predetto dalla distribuzione di Gauss. Queste proprietà sono anche riflesse nel fatto che distribuzioni di potenza illimitate con beta uguale a 2/3 hanno una media ed una varianza infinita.

Un risultato analogo è stato ottenuto per l’intervallo temporale tra due eventi successivi.

 

image

Figura 3 Confronto tra il segnale elettrico di un attacco epilettico (A) e quello di un terremoto (B). Notare la forte somiglianza.

 

image

Figura 4 Densità di probabilità del momento sismico e degli attacchi epilettici. Entrambe le statistiche sono compatibili con la stessa legge di potenza con esponente ̴ 2/3.

 

La figura 5, mostra come entrambe le densità di probabilità approssimativamente seguono una legge di potenza sebbene con una pendenza diversa.

Com’è possibile che questi sistemi operanti su scale spaziali e temporali completamente diverse, con processi alla base decisamente diversi, esibiscano tante somiglianze da un punto di vista statistico?

 

image

Figura 5 Densità di probabilità degli intervalli temporali tra due attacchi epilettici successivi (curva rossa) e tra due terremoti (curva blu).

 

Una possibile speculazione per tale somiglianza potrebbe venire dal fatto che entrambi questi sistemi sono formati da tanti elementi interagenti in competizione tra loro, e che la maggior parte di tali sistemi esibiscono un comportamento auto-organizzato con una statistica che segue una legge di potenza. In parole semplici, gli attacchi epilettici come i terremoti accadono quando l’attività del cervello o della crosta terrestre, visitano la parte destra della distribuzione dell’energia/magnitudo o allo stesso modo la parte sinistra della distribuzione degli intervalli temporali tra due attacchi epilettici o tra due scosse successive. Sia il cervello che la crosta terrestre possono essere simulati con un sistema di oscillatori non-lineari con dinamica instabile e un numero elevatissimo di interconnessioni con proprietà frattali o auto-somiglianti, che si ripetono attraverso una vasta gerarchia di scale spaziali. L’analisi dinamica di tali sistemi ha mostrato che essi si trovano al confine tra lo stato ordinato e quello caotico, come tanti altri sistemi complessi. Una caratteristica fondamentale dei sistemi complessi è proprio la capacità di visitare sia zone ordinate che quelle caotiche (pensate ad un’autostrada dove all’improvviso si forma un ingorgo senza alcun motivo apparente e senza nessun motivo scompare all’improvviso) facendo tesoro dell’esperienza accumulata (effetto memoria o feed-back). Per questi sistemi la somma è maggiore delle parti nel senso che il sistema come un tutt’uno riesce a mostrare comportamenti decisamente complessi che nessuna delle singole parti riuscirebbe a mostrare. È solo l’azione di gruppo, l’interazione tra la maggior parte degli elementi del sistema a far emergere un tale comportamento. La scienza della complessità contrariamente alla fisica riduzionista non cerca di dividere un sistema in parti più semplici da studiare ma cerca di analizzare il sistema come un unico “corpo” che vive ed interagisce con il mondo che lo circonda (sistema aperto da un punto di vista termodinamico). È molto probabile che tutti i sistemi complessi siano retti da leggi universali la cui comprensione potrebbe definitivamente gettare una nuova luce sul comportamento della natura e dell’Universo. Ancora una volta la matematica sembra essere l’unica chiave per aprire la serratura della Natura, e riuscire, così, a carpire il segreto ultimo delle cose.

 

Per approfondire:

http://arxiv.org/ftp/arxiv/papers/0712/0712.3929.pdf

http://chaos1.la.asu.edu/~yclai/papers/PRE_010_OFSML.pdf

Nessun commento:

Posta un commento

http://www.wikio.it