La scienza è la poesia della realtà come afferma lo scienziato Richard Dawkins etologo ed evoluzionista. E in particolare la matematica è alla base della natura e di molte sue costruzioni che possiamo considerare artistiche. Non a caso Galileo Galilei diceva a proposito dell’Universo: “Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi ed altre figure geometriche, senza i quali mezzi è impossibile a intenderne umanamente parola; senza questi è un aggirarsi vanamente per un oscuro labirinto” Il Saggiatore, Galileo Galilei (1564-1642).
Come riportato ampiamente nel mio libro “ L'Universo dei numeri i numeri dell'Universo" i giovani di oggi non amano la matematica. Essi la ritengono qualcosa di artificioso, estraneo, senza legami con la natura, con l’arte, la musica, la letteratura; difficile da capire, piena di formule strane che non hanno niente a che fare col mondo che ci circonda. Nel mio libro ho provato a smentire queste false opinioni andando a curiosare nell’intero Universo con occhi matematici, cercando tra i fiori e le foglie, le pigne e le spiraleggianti galassie, tra le cicale e le lenti gravitazionali la presenza della regina delle scienze. Voglio continuare con questo mio proposito descrivendovi in questo post come le api mostrano di conoscere la matematica e la geometria meglio di molti nostri giovani studenti. Come ci riescano pero’ rimane un mistero.
Cominciamo con il chiederci come mai le cellette del favo hanno tutte una sezione di forma esagonale. La risposta come sempre ce la da’ la matematica. Gli esagoni regolari, cioe’ esagoni con tutti i lati uguali e gli angoli uguali (120 gradi), fanno parte delle famiglia dei poligoni regolari con cui e’ possibile tassellare completamente il piano, cioe’ ricoprirlo completamente senza lasciare spazi vuoti. Oltre all’esagono lo puo’ fare il triangolo equilatero e un quadrato.
Ma allora perche’ le api usano proprio l’esagono? Per poter ricoprire il piano con dei triangoli equilateri bisogna fare in modo che 6 di essi abbiano in comune un vertice (in questo modo essendo l’angolo di ogni triangolo equilatero di 60 gradi avremo che 6*60 fa l’angolo giro). Per i quadrati invece ne avremo 4 che condividono lo stesso vertice (4*90=360 gradi) e per l’esagono 3 (6*120=360 gradi). La differenza significativa sta quindi nel perimetro complessivo della struttura. Le api scelgono quella piu’ economica da un punto di vista della cera utilizzata. Meno perimetro meno cera. Si tratta di un problema di minimo. Calcoliamo il perimetro di un triangolo equilatero, di un quadrato e di un esagono a parita’ di area. Supponiamo che la superfice sia uguale a 1 (A=1) e indichiamo con Lt, Pt, Lq, Pq, Le, Pe, lati e perimetri del triangolo, quadrato ed esagono rispettivamente.
Per il quadrato abbiamo:
Per il triangolo equilatero calcoliamo prima l’altezza utilizzando il teorema di Pitagora:
da cui deriva che l’area e il perimetro sono uguali a:
Per l’ esagono, essendo costituito da 6 triangoli equilateri avremo:
Si puo’ osservare che a parita’ di superficie, il perimetro piu’ piccolo e’ quello dell’esagono. Ecco perche’ le api lo hanno scelto per la costruzione del favo. E’ la struttura che richiede meno cera per la sua costruzione. Per essere precisi, il cerchio e’ la figura geometrica che a parita’ di superficie ha il perimetro piu’ piccolo (P=3.544) ma le api non lo utilizzano perche’ se e’ vero che richiede meno cera e allo stesso tempo lascia troppi spazi vuoti inutilizzabili cioe’ non permette la tassellazione del piano.
Le api tutti i giorni costruiscono i loro favi seguendo una procedura matematica che ottimizza lo spazio anche se non conoscono le leggi matematiche. Possiamo pensare che esse sanno fare matematica anche se in modo inconsapevole cioe’ senza rendersene conto. E’ probabile che l’artefice di tutto cio’ sia la selezione naturale in azione da millenni sul nostro pianeta che non fa altro che scegliere le opzioni migliori in termini di sopravvivenza.
Passiamo adesso ad un secondo problema matematico che le api sembrano saper risolvere anche piu’ velocemente di un computer. Si tratta del cosiddetto problema del commesso viaggiatore.
Data per esempio una rete di città disposte in modo sparso e connesse da strade, si tratta di trovare il percorso più breve che un viaggiatore deve coprire per visitare tutte le città una sola volta. Il problema a prima vista puo’ sembrare facile, ma in effetti lo e’ solo se il numero delle citta’ e’ molto piccolo. In caso contrario anche dei grandi computer possono avere delle difficolta’ ad identificare il percorso minimo in quanto non esiste un algoritmo efficiente e quindi non resta che lavorare di forza bruta calcolando tutti i possibili perscorsi e scegliendo poi quello piu’ breve. E questo puo’ avere delle ripercussioni nel mondo reale visto che il problema del commesso viaggiatore trova applicazioni pratiche nell’organizzazione della logistica e dei trasporti, nel disegno di circuiti integrati e nella robotica industriale. Per una mente umana sarebbe difficile, e richiederebbe molto tempo, elaborare N nodi e risolvere il problema; per un computer invece l'elaborazione dei dati risulta più veloce, ma si fatica lo stesso con numeri superiori ai 1000 nodi. Alle api, invece, la soluzione del problema del commesso viaggiatore viene del tutto naturale.
Alcuni scienziati della Queen Mary School e della Royal Halloway University infatti, hanno scoperto che le api imparano velocemente a trovare il tragitto piu’ breve che separa i fiori da cui prelevano il nettare, anche se i fiori sono stati scoperti dalle api seguendo un tragitto diverso da quello ottimale.
"In natura, le api devono collegare centinaia di fiori con un metodo che minimizzi le distanze, per poi trovare in modo affidabile la via di casa, non è di certo un'abilità banale se si ha il cervello delle dimensioni di una capocchia di spillo!" dice Lars Chittka della Queen Mary's School of Biological and Chemical Sciences. "Di sicuro questi problemi tengono i supercomputer impegnati per giorni. Studiando come i cervelli delle api risolvono queste sfide potrebbe consentirci di identificare il circuito neurale minimo per risolvere problemi complessi".
Alcuni scienziati della Queen Mary School e della Royal Halloway University infatti, hanno scoperto che le api imparano velocemente a trovare il tragitto piu’ breve che separa i fiori da cui prelevano il nettare, anche se i fiori sono stati scoperti dalle api seguendo un tragitto diverso da quello ottimale.
"In natura, le api devono collegare centinaia di fiori con un metodo che minimizzi le distanze, per poi trovare in modo affidabile la via di casa, non è di certo un'abilità banale se si ha il cervello delle dimensioni di una capocchia di spillo!" dice Lars Chittka della Queen Mary's School of Biological and Chemical Sciences. "Di sicuro questi problemi tengono i supercomputer impegnati per giorni. Studiando come i cervelli delle api risolvono queste sfide potrebbe consentirci di identificare il circuito neurale minimo per risolvere problemi complessi".
Il team di ricerca ha utilizzato dei fiori artificiali controllati da computers, per verificare se le api seguissero un cammino definito dall'ordine con cui hanno scoperto i fiori, o se fossero in grado di trovare il tragitto più corto. Dopo aver esplorato i fiori artificiali, le api hanno presto appreso a volare seguendo il percorso più breve.
La scoperta non ha rilevanza soltanto per l'informatica. Potrebbe infatti fornirci informazioni utili per migliorare le nostre infrastrutture dei trasporti e migliorare Internet attraverso l'apprendimento di come le informazioni fluiscano attraverso i nodi della Rete. Il tutto senza l'utilizzo di computers.
"C'è una percezione comune, che cervelli più piccoli costringano gli animali ad essere semplici" dice Mathieu Lihoreau, co-autore della ricerca. "Ma il nostro lavoro con le api mostra capacità cognitive avanzate con un numero davvero limitato di neuroni. C'è un bisogno urgente di comprendere il sistema neuronale che sta alla base dell'intelligenza animale, e sistemi nervosi relativamente semplici come quelli delle api rendono la soluzione del mistero più alla portata". Alcuni mesi fa il team del Queen Mary School non solo ha confermato la capacita’ delle api di risolvere il problema del commesso viaggiatore ma addirittura ha messo in evidenza la loro capacita’ di ottimizzare sia la distanza che la quantita’ di nettare disponibile in ogni fiore. Quando tutti i fiori usati nell’esperimento (sempre artificiali) contengono la stessa quantita’ di nettare, le api imparano a volare lungo la traiettoria piu’ corta per visitarli tutti. Ma se un fiore contiene piu’ nettare di un altro, questo forza le api a decidere se seguire la strada piu’ corta o se visitare per primo il fiore che da’ la ricompensa maggiore.
"C'è una percezione comune, che cervelli più piccoli costringano gli animali ad essere semplici" dice Mathieu Lihoreau, co-autore della ricerca. "Ma il nostro lavoro con le api mostra capacità cognitive avanzate con un numero davvero limitato di neuroni. C'è un bisogno urgente di comprendere il sistema neuronale che sta alla base dell'intelligenza animale, e sistemi nervosi relativamente semplici come quelli delle api rendono la soluzione del mistero più alla portata". Alcuni mesi fa il team del Queen Mary School non solo ha confermato la capacita’ delle api di risolvere il problema del commesso viaggiatore ma addirittura ha messo in evidenza la loro capacita’ di ottimizzare sia la distanza che la quantita’ di nettare disponibile in ogni fiore. Quando tutti i fiori usati nell’esperimento (sempre artificiali) contengono la stessa quantita’ di nettare, le api imparano a volare lungo la traiettoria piu’ corta per visitarli tutti. Ma se un fiore contiene piu’ nettare di un altro, questo forza le api a decidere se seguire la strada piu’ corta o se visitare per primo il fiore che da’ la ricompensa maggiore.
Quello che l’esperimento ha mostrato e’ che le api decidono di visitare per primo il fiore che contiene piu’ nettare se questo non implica un significativo aumento della distanza totale; in caso contrario le api non visitano questo fiore per primo. Questo comportamento rivela che le api riescono a fare un giusto trade-off tra la minima distanza e la quantita’ di nettare disponibile. E’ la prima evidenza che gli animali per procurarsi il cibo, usano una memoria combinata della locazione e della sua profittabilita’ quando decide quale strada seguire.
Come ultimo esempio voglio riportare i risultati di un esperimento di un team del Vision Centre in Australia che mostrano come le api possono distinguere i numeri osservandoli. Nel disegno riportato qui sotto viene schematizzato l’esperimento fatto. L’ape incontra una porta sulle cui pareti sono disegnati dei pallini neri e attraversa un tunnel di un metro. Alla fine di questo tunnel c’e’ un deflettore all’interno di quella che viene chiamata la camera della decisione. All’interno di questa camera puo’ scegliere due strade C1 e C2. Una sola di queste due camere all’interno ha una ricompensa (una soluzione di zucchero) ed essa viene indicata con lo stesso numero di punti neri presenti in S. Chiaramente se l’ape sceglie la camera che ha lo stesso numero in ingresso avra’ una ricompensa altrimenti no.
I risultati hanno dimostrato che le api possono distinguere un pattern a 2 e 3 punti senza dover contare I punti. E con un po’ di insegnamento possono imparare la differenza anche tra 3 e 4 punti. Comunque a 4 la matematica delle api sembra arrestarsi. Oltre non riescono ad andare, nel senso che non riescono a distinguere 4 da 5. I risultati sono indipendenti dal pattern utilizzato, dal colore e dalla forma dei punti. Le api riconoscono la differenza tra due, tre e quattro, sebbene con minore affidabilita’ il 4.Questo processo va sotto il nome di “subitizing”, che significa che le api possono rispondere rapidamente ad un piccolo numero di oggetti. Ci sono state diverse evidenze che I vertebrati, come piccioni, delfini o scimmie, hanno delle competenze numeriche, ma mai ci si sarebbe aspettato di trovare le stesse abilita’ negli insetti. Il team del Vision centre crede che molto probabilmente non c’e’ alcuna frontiera tra gli insetti, animali e noi. La questione piu’ interessante e’ se le api possono realmente eseguire dei calcoli semplici di aritmetica e a questo scopo il team di studiosi capitanato dal Dr. Shaowu gia’ pronto per eseguire un esperimento per esplorare cio’. Non ci resta che aspettare. Chi e’ disposto ancora a credere che la matematica e’ quella disciplina noiosa, fredda e piena di formule che non ha nessun legame con la realta’?
Nessun commento:
Posta un commento