martedì 24 aprile 2018

La vastita’ del cosmo


clip_image002Oggi grazie al progresso tecnologico, gli astronomi riescono ad andare indietro nel tempo ed osservare l’universo subito dopo il Big Bang (circa 380000 anni dopo). Questo perche’ la velocita’ della luce e’ costante e quindi un raggio luminoso di una stella per arrivare a noi impieghera’ un tempo tanto maggiore quanto piu’ e’ lontana da noi. Questo sembra indicare che l’intero universo sia alla portata dei nostri telescopi. Essendo l’eta’ del nostro Universo di 13.7 miliardi di anni questo significa che gli astronomi possono orientare i loro telescopi in ogni direzione dello spazio ottenendo cosi una sfera visibile di 13.7 miliardi di anni luce e con la terra al suo centro. Ma noi sappiamo che l’universo si sta espandendo e questo fa si che il diametro dell’universo osservabile sia di ben 92 miliardi di anni luce. Ma come e’ possibile?

Per rispondere dobbiamo partire dalla ben nota legge di Hubble. Questa stabilisce che la velocita' di recessione delle Galassie e' proporzionale alla loro distanza cioe':

Vr=H*d

dove la costante di proporzionalita' H oggi e' chiamata costante di Hubble e le cui dimensioni sono quelle di un inverso del tempo. La migliore stima conosciuta oggi per questa costante e' :

~ 67 (Km/s)/Mpc

dove Mpc (Mega parsec) e' una misura di distanza equivalente a 3*1022 metri. Volendo esprimere la costante di Hubble in 1/sec abbiamo:

H=(67*1000)/(3*1022)=67/3*103*10-22=67/3*10-19=22.3*10-19 1/sec

Detto cio' dobbiamo fare una precisazione: nella relativita' di Einstein non sono le galassie ad allontanarsi tra loro ma lo spazio tra di esse a dilatarsi (da ogni punto del cosmo "emerge' di continuo nuovo spazio). Possiamo fare l'esempio classico del palloncino con sopra incollate delle monetine. Quest'ultime rappresentano le nostre galassie e la superficie del palloncino il tessuto spazio-temporale del cosmo. Se gonfiamo il palloncino (espansione dell'universo) la sua superficie aumenta e le monetine si allontaneranno sempre di piu' senza pero' che le loro dimensioni cambino. Questo e' quello che succede alle galassie "incastonate" nella trama dello spazio tempo. Quest'ultimo si dilata, le galassie si allontanano ma le loro dimensioni rimangono inalterate. Questa dilatazione del cosmo implica alcuni problemi con la misura di distanza. Se l'universo fosse statico allora due galassie qualsiasi sarebbero ad una certa distanza immutabile nel tempo essendo tutto fermo. In questo caso supponendo che una delle galassie sia la nostra, la seconda galassia sarebbe ad una certa distanza da noi e la luce emessa da ques'ultima arriverebbe a noi dopo un tempo dato dalla distanza diviso la velocita' della luce (massima velocita' possibile per gli oggetti all'interno dell'universo). Quando la luce ci raggiunge la galassia che l'ha emessa starebbe sempre li alla stessa distanza di quando la luce e' partita. Ma noi sappiamo che l'universo non e' statico ma e' in espansione e in questo momento sta addirittura accelerando. Questo significa che quando una stella o una galassia emette la luce si troveranno ad una certa distanza chiamiamola d1 da noi. Una volta che I fotoni partono alla volta della nostra terra, il corpo che ha emesso la luce trovandosi "incastrato" nella trama dello spazio tempo subira' una dilatazione che lo portera' ad allontanarsi dalla terra seguendo la legge di Hubble. Quando i fotoni arriveranno sulla Terra il corpo che l'ha emessi sara' adesso ad una distanza d1+d2 dove d2 e' la distanza coperta dall'oggetto nel tempo in cui i fotoni sono arrivati sulla terra. Questa distanza dc=d1+d2 viene chiamata distanza comovente che e' ben diversa dal concetto di distanza che abbiamo noi quando misuriamo per esempio la lunghezza di un'asta con lo spazio tempo che fa da spettatore. Supponiamo adesso che una stella emetta un fotone da una distanza di 13 miliardi di anni luce. Questo vuol dire che il fotone arrivera' sulla terra dopo 13 miliardi di anni. Ma durante tutti questi anni la stella ha continuato ad allontanarsi da noi a causa dell'espansione dell'universo e quindi si trovera' ben piu' lontana dei 13 miliardi di anni luce iniziali. Ma a che velocita' si espande lo spazio tempo? C'e' un limite cosi come per gli oggetti nell'universo? La risposta e' no. Lo spazio tempo non e' soggetto al vincolo della velocita' della luce. Partendo dalla legge di Hubble possiamo calcolare a quale distanza dalla Terra una galassia "incastonata" nello spazio tempo raggiunge la velocita' della luce. Partendo dalla legge di Hubble e sostituendo c a Vr:

c=H*d

d=c/H=13.4 miliardi di anni luce

Per distanze superiori a questa chiamata raggio di Hubble le galassie si allontanano radialmente dalla terra ad una velocita' maggiore della luce. Questo raggio ci dice che per tutto quello che si trova al di la' di esso non potremo piu' avere nessuna informazione. Questo limite e' anche chiamato orizzonte degli eventi. In cosmologia esiste anche un' altra definizione molto importante che va sotto il nome di "universo osservabile". ovvero quella regione del cosmo da cui abbiamo potuto ricevere anche in passato un segnale luminoso. Come gia' detto se l'universo fosse statico tale regione si estenderebbe per 13.7 miliari di anni luce perche' questa sarebbe la distanza percorsa dalla luce dal Big Bang ad oggi. Ma l'universo nel frattempo si e' dilatato e secondo le equazioni differenziali della relativita' generale di Einstein, il raggio di tale regione sarebbe di ~46 miliardi di anni luce. Questa equazione differenziale lega la distanza comovente al redshift z e non e' risolvibile in forma chiusa ma solo analiticamente. La forma matematica della distanza comovente in funzione del redshift e' una sigmoide che parte da zero e tende a saturare al valore di ~46 miliardi anni luce per valori di z intorno a 1000. Quindi il diametro dell'universo osservabile e' di circa 90 miliardi di anni luce. Chiudiamo con un esempio pratico. Consideriamo la galassia Z8-GND 5296 con un parametro di redshift z di 7.5 (misurato dal telescopio Hubble alcuni anni fa). Grazie alla relazione che lega la velocita' radiale di un corpo con lo spostamento della lunghezza d'onda della radiazione ricevuta rispetto a quella emessa (parametro redshift z):

Vr=[((z+1)2-1)/((z+1)2+1)]*c

possiamo ricavare la velocita' di recessione della galassia Z8-GND 5296 che risulta essere di 3*108 m/s. Utilizzando la legge di Hubble possiamo stabilire la distanza rispetto alla terra pari a

d=Vr/H=0.13*1025 metri

d=0.13*1027*10-16=0.13*1011=13*109 anni luce

essendo

1 m=10-16 anni luce

Quindi la galassia Z8-GND 5296 si stava allontanando da noi ad una velocita' di 300 milioni di m/s, e si trovava ad una distanza di 13 miliardi di anni luce quando ha emesso la luce che Hubble ha raccolto. La luce raccolta e' stata emessa appena 700 milioni di anni dopo il Big Bang. E in questo momento dove si trova questa Galassia? Poiche' l'universo sta accelerando di sicuro ad una distanza maggiore di quando la luce raccolta da Hubble parti per il suo lungo viaggio verso la terra e cioe' maggiore di 13 miliardi di anni luce. Utilizzando il grafico di cui abbiamo gia' parlato che lega la distanza comovente con il parametro z si calcola infatti un valore di circa 30 miliardi di anni luce. In definitiva, come conseguenza dell'espansione dell'universo che puo' avvenire ad una velocita' maggiore di quella della luce ci troviamo nella situazione in cui per molte galassie non potremo avere piu' nessun tipo di contatto trovandosi queste al di la' dell'universo osservabile. Per altre riceveremo ancora un segnale e quindi saranno visibili fino a quando non oltrepasseranno l'universo osservabile e altre ancora che oggi non sono visibili perche' troppo lontane, che appariranno ai nostri occhi appena la luce ci raggiungera'. Questo l’universo osservabile. E quello che e’ nascosto a noi quanto e’ grande? Dipende dalla sua forma. Secondo la relativita’ generale la foma a sua volta dipende da quanta materia/energia c’e’ nell’Universo visto che essa curva il tessuto spazio-temporale. Gli scienziati hanno calcolato una densita’ critica dc direttamente proporzionale al quadrato della costante di Hubble H, cioe’

dc=k*H2

dove k e’ una costante. Il rapporto tra la densita’ misurata e quella critica in genere viene indicata con la lettera greca omega. La densita’ critica e’ quella che rende l’energia cinetica dell’espansione uguale all’energia potenziale gravitazionale del volume che si sta espandendo. Consideriamo una sfera piena di galassie centrata nella nostra posizione. Sia r il raggio di questa sfera e d la densita’ di materia al suo interno. Una galassia di massa m e a distanza r subira’ un’attrazione della materia contenuta in tale sfera di massa totale M, e quindi l’energia potenziale dell’espansione sara’

(G*m*M)/r=(G*m*d*4/3*p*r3)/r

dove G e’ la costante gravitazionale e p la costante pi-greco (3.14…).

Uguagliando questo valore a quello dell’energia cinetica:

1/2*mv2=1/2*m*H2 *r2

dove H e’ la costante di Hubble, otteniamo che la densita’ critica e’ data da:

dc = (3/8*H2)/(p*G)=10-29 g/cm3

clip_image004

Se la densita’ dell’Universo fosse minore di quella critica cioe’ se omega fosse negativa, allora non ci sarebbe abbastanza materia per fermare l’espansione del cosmo, che continuerebbe per sempre. La forma risultante sarebbe curvata come la superficie di una sella. Questo e’ conosciuto come un Universo aperto.

Se la densita’ fosse maggiore di quella critica (omega positiva) allora ci sarebbe abbastanza materia per fermare l’espansione dell’Universo. In questo caso l’Universo risulterebbe chiuso e finito e avrebbe una forma sferica. Una volta che l’universo arresta la sua espansione iniziera’ a contrarsi e le galassie ad avvicinarsi sempre di piu’. Probabilmente in questo caso l’Universo subira’ un processo inverso del Big Bang, chiamato Big Crunch. Questo e’ conosciuto come un Universo chiuso. Se l’Universo invece contenesse una quantita’ di materia tale da far si che la densita’ sia uguale a quella critica, allora il tasso di espansione diminuira’ lentamente in un tempo infinito. In questo caso l’Universo e’ considerato piatto e di dimensione infinita.

Detto cio’ e’ ovvio che ci chiediamo quale e’ il valore della densita’ o anche del parametro omega dell’Universo.

Per stabilirlo bisogna conoscere quanta materia e radiazioni ci sono nel cosmo. La materia ordinaria e’ presente in diverse forme: pianeti, stelle, polveri, gas interstellare e intergalattico. Se valutiamo la densita’ di questa materia al massimo otteniamo circa il 5% della densita’ critica. Anche la radiazione e’ presente in grande quantita’ come energia elettromagnetica o come particelle relativistiche. Ma essa rende conto di meno del 1% della densita’ critica. Quindi se nell’universo ci fossero solo queste due forme di massa-energia, la densita’ sarebbe inferiore a quella critica, e l’universo continuerebbe ad espandersi senza fine. Sappiamo, pero’, che nell’Universo esiste un’altra forma di massa-energia, la cosiddetta “materia oscura”. Essa e’ stata introdotta per spiegare i movimenti delle stelle nelle galassie e delle galassie negli ammassi di galassie. Le stelle periferiche di una galassia per esempio, si muovono cosi’ velocemente che volerebbero via se non ci fosse una quantita’ significativa di materia superiore a quella visibile all’interno della galassia, capace di attirarle verso il centro compensando la forza centrifuga. Cosa sia la materia oscura ancora non si sa e non si sa nemmeno quanta ce ne sia. Le misure piu’ recenti tendono a convergere ad una stima di circa il 25% della densita’ critica.

Esiste un quarto contributo possibile alla composizione dell’Universo, che e’ stato ipotizzato per spiegare l’osservazione dell’accelerazione dell’espansione dell’Universo. Questo significa che nell’universo deve essere presente una strana forma di energia a pressione negativa che e’ stata chiamata energia oscura. Questa produce una repulsione e quindi aiuta l’espansione dell’Universo, facendola accelerare non appena diventa la forma di energia dominante. In base ai calcoli piu’ recenti tale energia dovrebbe costituire circa il 70% della densita’ critica e quindi essere la componente piu’ importante del nostro Universo. Una forma di energia con le stesse caratteristiche di quella oscura potrebbe essere l’energia del vuoto, misurata sperimentalmente e dovuta alla creazione e annichilazione continua di particelle-antiparticelle. La fisica fondamentale pero’ prevede un valore per questa energia decisamente piu’ alto di quello misurato e quindi al momento non esiste una teoria soddisfacente del fenomeno. A causa delle grosse incertezze sulla materia oscura e sull’energia oscura e’ praticamente impossibile stabilire se la densita’ totale dell’Universo sia superiore, inferiore o uguale a quella critica. Bisogna trovare quindi un modo indipendente per stimare la densita’ dell’Universo. Gli scienziati hanno pensato di usare la geometria e curvatura dello spazio tempo, misurando gli effetti che questa produce sui raggi di luce provenienti da distanze enormi. Come gia’ detto prima, la massa-energia presente nel nostro Universo secondo la relativita’ generale tendera’ a curvare lo spazio-tempo sia a grandi che a piccole scale. Dalle equazioni della relativita’ generale ci aspettiamo una curvatura positiva se il parametro omega e’ maggiore di 1, nulla se omega e’ uguale a 1 e negativa se omega e’ minore di 1. La curvatura su larga scala agira’ sui raggi di luce di oggetti molto lontani. Se la curvatura dello spazio tempo fosse positiva i raggi di luce convergerebbero e quindi le sorgenti apparirebbero piu’ grandi come succede quando viene utilizzata una lente di ingrandimento. In caso di curvatura negativa accadrebbe esattamente il contrario con le sorgenti che apparirebbero piu’ piccole, come dietro ad una lente divergente. Se esistesse un metodo per stabilire se la luce proveniente da sorgenti lontanissime viaggia in linea retta oppure no, potremmo determinare la geometria globale dell’Universo e quindi omega. Questo approccio e' stato tentato a lungo in passato, utilizzando le galassie lontane come sorgenti dei raggi di luce. Ma le galassie piu' lontane sono anche viste in un’ epoca piu' antica della loro evoluzione, e risultano essere irregolari, per cui e' difficile capire se eventuali deformazioni delle loro immagini siano dovute ad una eventuale curvatura dei raggi di luce durante il loro cammino, o siano piuttosto il risultato della irregolarita' delle sorgenti. Come si fa allora a misurare la curvatura dell’Universo? Ricorrendo a quella che gli scienziati chiamano radiazione cosmica di fondo. Vediamo di cosa si tratta. L’universo subito dopo il Big Bang subi’ tutta una serie di transizioni fino ad arrivare in uno stato di plasma (elettroni, protoni, nuclei di He e fotoni) dopo 380000 anni. A causa della diminuzione di temperatura in questo momento l’Universo cessa di essere un plasma e si formano i primi atomi cosi come li conosciamo noi. I fotoni smettono di interagire con le altre particelle (con la temperatura diminuisce la loro energia) e da questo momento in poi non potranno fare altro che iniziare a vagare per il cosmo senza piu’ interagire con la materia. Dunque ancora oggi dopo 13.7 miliardi di anni di vita questa radiazione pervade l’intero Universo ( si tratta di microonde come quelle dei forni usati in cucina) e che noi chiamiamo radiazione cosmica di fondo o piu’ semplicemente radiazione fossile. Oggi per ogni metro cubo di spazio ci sono circa 200 milioni di fotoni fossili e questi non avendo interagito con nulla trasportano informazioni relative all’Universo di 380000 anni dopo il Big Bang. La temperatura o energia di questa radiazione oggi e’ di solo 2.725 gradi Kelvin (cioe’ circa 270 gradi sotto lo zero) mentre all’inizio era di circa 3000 K. Il raffreddamento della radiazione fossile e’ avvenuto in conseguenza del fatto che tutte la dimensioni dell’Universo sono aumentate di un fattore dato dal rapporto 3000/2.725=1100. Ricordiamo infatti che dalla prima legge della termodinamica in caso di processo adiabatico se il volume di un gas aumenta allora la temperatura diminuisce. Una misura accurata della radiazione fossile e’ stata eseguita prima dal satellite WMAP e dopo dal satellite Planck, che oltre al valore medio della temperatura di 2.725 K hanno anche misurato delle piccolissime fluttuazioni di temperatura dipendenti dalla direzione da cui proviene la radiazione. Si tratta di fluttuazioni veramente piccolissime (decimillesimo di grado) ma nonostante cio’ sono molto importanti per dare diverse risposte sull’Universo appena nato. In effetti WMAP/Plank hanno scattato una fotografia dello stato termico dell’Universo come si presentava circa 13.7 miliardi di anni fa

clip_image006

Dall’analisi della mappa della radiazione fossile si e’ scoperto che approssimativamente tutte le macchie che indicano una fluttuazione di temperatura hanno le stesse dimensioni. Ma come mai ci sono queste fluttuazioni? Esse hanno avuto origine in una frazione di secondo dopo il Big Bang e consistevano di addensamenti o di rarefazioni locali di materia e di fotoni. La materia contenuta in queste fluttuazioni tendeva ad attrarre materia verso il centro grazie alla forza gravitazionale mentre i fotoni tendevano a farla espandere a causa della pressione di radiazione. Si trattava quindi di sistemi non in equilibrio che si espandevano e si contraevano rispetto alla loro posizione di equilibrio. In pratica l’Universo vibrava come vibra l’aria a causa di un suono. Al momento del disaccoppiamento tra materia e radiazione ogni fluttuazione e’ stata sorpresa in qualche istante della sua oscillazione. Poiche’ la crescita e contrazione avvengono ad una velocita’ pari a c/31/2 dove c e’ la velocita’ della luce, al momento del disaccoppiamento della materia le dimensioni di tali fluttuazioni erano:

3*108/31/2 m/s * 380000 *3*107 s=2*1021 m

A partire da quel momento l’estensione delle fluttuazioni e’ cresciuta insieme all’universo espandendosi di circa 1100 volte (cosi come qualsiasi altra dimensione del cosmo). Quindi oggi l’estensione di queste fluttuazioni dovrebbe essere:

h=1100*2*1021 =2.2*1024 m

Proviamo a fare adesso un piccolo calcolo. Da quando l’Universo e’ iniziato la radiazione ha percorso quasi

L=3*108*13.7*109*365*24*3600=1.2*1026 m

Se l’universo avesse una curvatura nulla, allora i raggi di luce provenienti dalle fluttuazioni primordiali formerebbero un triangolo e noi dovremmo osservare queste fluttuazioni sotto un angolo dato da:

h/L=2.2*1024/1.2*1026 radianti=1 grado

o sotto un angolo minore/maggiore se lo spazio avesse una curvatura negativa/positiva.

clip_image008

Le misure piu’ recenti indicano che l’Universo sia piatto, suggerendo quindi che sia anche infinito, cosa che non potremo mai verificare con i nostri telescopi essendo l’Universo visibile limitato.

Ma come mai tra tutti i possibili universi variamente curvi il nostro e’ proprio piatto? Come e’ potuto succedere che la densita’ media della materia e dell’energia abbia assunto tra gli infiniti valori possibili proprio il valore che rende piatto lo spazio-tempo? Al momento nessuno lo sa.

clip_image010

domenica 18 marzo 2018

Una nuova fisica al lavoro nell’Universo?


Nel 1929 Hubble annunciò che la velocita’ radiale delle galassie era proporzionale alla loro distanza. In altre parole piu’ una galassia e’ distante da noi, piu’ la sua velocita’ di allontanamento e’ elevata. Il grafico seguente mostra i dati raccolti da Hubble con la velocita’ delle galassie riportata in ordinata e le loro distanze sulle ascisse:

clip_image001

La pendenza della retta che interpola queste misure è ora nota come costante di Hubble H. Dato che sia i kilometri che i Megaparsec sono unità di distanza, l'unità di misura di H è [1/tempo], essendo la velocita’ il rapporto tra spazio e tempo. Ma cosa rappresenta H? Il suo inverso e’ proprio l’eta’ dell’universo secondo la relazione di Hubble:

V=HD      da cui     D=V/H=Vt   con    t=1/H   appunto l’eta’ dell’universo.

Hubble trovo’ per il rapporto 1/H il valore di circa 2 miliardi di anni. Dal momento che tale valore dovrebbe approssimare l'età dell'Universo, e noi sappiamo (era noto anche nel 1929) che l'età della Terra supera i 2 miliardi di anni, il valore di H trovato da Hubble portò ad un generale scetticismo nei confronti dei modelli cosmologici, e fornì una motivazione a favore del modello stazionario, cioe’ quello di un universo non in espansione.

Tuttavia, pubblicazioni successive misero in luce alcuni errori compiuti da Hubble nelle sue misure. La correzione di questi errori portò ad un ridimensionamento verso il basso del valore della costante di Hubble. Attualmente il valore della costante e’ di 65±8 km/s/Mpc.
Con questo valore di H, l'età approssimativa dell'Universo è di 15 miliardi di anni. Qui di seguito i risultati recenti sulla relazione di Hubble la cui pendenza e’ pari a 65 Km/sec/Mpc.

clip_image003

Ma come faceva Hubble a misurare la velocita’ di una galassia lontana? Utilizzando quello che va sotto il nome di spostamento verso il rosso (redshift). La luce o una qualsisi altra radiazione elettromagnetica emessa da un oggetto in movimento ha una lunghezza d'onda maggiore di quella che aveva all'emissione. Ciò equivale a dire che nel caso della luce il colore si sposta nella direzione del rosso che e’ l'estremo inferiore dello spettro del visibile. Al contrario se un’oggetto si sta avvicinando la luce emessa si sposta verso il blu.

clip_image005

image


Se indichiamo con Le la lunghezza d’onda emessa e con Lo quella osservata e’ possibile scrivere:

1+ z=[(1+v/c)/(1-v/c)]1/2

dove c indica la velocita’ della luce, v la velocita’ dell’oggetto e il parametro z e’ dato da:

z=(Lo-Le)/Le

Quindi dalla misura di z cioe’ dello shift della luce si puo’ risalire alla velocita’ dell’oggetto che ha emesso la luce.

Per misurare la distanza delle galassie invece, Hubble aveva a disposizione tre metodologie ognuna valida per un certo intervallo di distanze. Il metodo piu’ antico e’ quello della parallasse che va bene per stelle non oltre i 500 anni luce. Si tratta di una tecnica geometrica che sfrutta lo spostamento delle stelle in primo piano rispetto a quelle fisse dovuto alla rotazione della terra intorno al sole. Il secondo metodo e’ quello delle Cefeidi, un tipo di stelle la cui luminosita’ varia periodicamente e che permettono di calcolare la loro distanza sfruttando la relazione tra quest’ultima e il periodo della loro luminosita’. L’intervallo di applicabilita’ va fino a circa 10 milioni di anni luce. L’ultimo metodo e’ quello delle supernove. Valutando l’andamento della luminosita’ di queste stelle subito dopo la loro esplosione e’ possibile calcolarne la luminosita’ assoluta e quindi la loro distanza. Questa tecnica permette di arrivare a distanze di alcune centinaia di milioni di anni luce.


clip_image009


Ma ritorniamo adesso alla costante di Hubble. E’ di qualche mese fa la notizia dell’utilizzo del telescopio spaziale Hubble per stabilire la misura piu’ precisa mai ottenuta della costante di Hubble. I risultati sono molto intriganti e sembrano evidenziare che ci sia qualche cosa di inaspettato al lavoro nell’universo. Questo perche’ i risultati confermano una fastidiosa discrepanza che mostra l’universo espandersi piu’ velocemente di quanto previsto dai dati relativi ai primi istanti del big bang. Il team di ricercatori capeggiato dal premio Nobel, Riess incluso anche l’italiano Stefano Casertano e Johns Hopkins, ha utilizzato Hubble per 6 anni aumentando il numero di stelle analizzate e con distanze fino a 10 volte maggiori di quelle ottenute precedentemente. Il valore della velocita’ di espansione ottenuto mostra una discrepanza di circa il 9% rispetto a quello previsto considerando i primi 378.000 anni dopo il Big Bang. Prima delle misure del telescopio Hubble, quelle effettuate dalla Agenzia spaziale Europea grazie al satellite Planck, avevano previsto per la costante di Hubble un valore intorno a 67 Km/sec per Megaparsec e non piu’ alto di 69 Km/sec/Mpc. Ma le misure recenti ottenute dal team di Riess riportano un valore della costante di Hubble di ben 73 Km/sec per Megaparsec, indicando che le galassie si stanno muovendo ad una velocita’ di allontanamento maggiore di quella prevista. I risultati della misura della costante di Hubble sono cosi precisi che gli astrofisici non possono non tener conto di questa incongruenza. Il team ritiene che alcune delle possibili spiegazioni per questa differenza siano legate all’universo oscuro che e’ il 95% della materia/energia contenuta nel nostro universo. La materia normale come stelle, pianeti e gas si crede costituisca solo il 5% del nostro universo. Il rimanente per il 25% e’ materia oscura e il 70% energia oscura, entrambi invisibili e mai rilevati in modo diretto. Vediamo la prima possibilita’. L’energia oscura, gia’ conosciuta in passato come fattore di accelerazione del nostro universo, sta spingendo lontano da noi le galassie con molta piu’ forza di quanto previsto. Questo potrebbe significare che l’accelerazione stessa potrebbe non essere costante ma cambiare nel tempo. Se questo fosse vero bisognerebbe allora rivedere il cosiddetto modello ACDM (Lambda cold dark matter) che spiega l’accelerazione del cosmo con la comparsa e scomparsa di particelle virtuali nello spazio vuoto che stirano lo spazio-tempo. Questo continuo ribollire del vuoto infatti non potrebbe spiegare un accelerazione che cambia col tempo.

clip_image011

Un’altra idea e’ quella che l’universo contenga delle nuove particelle subatomiche che viaggiano ad una velocita’ prossima a quella della luce. Si tratta di particelle velocissime, chiamate collettivamente “radiazione oscura”. Probabilmente si tratta di qualche cosa simile alle note particelle chiamate neutrini, creati nelle reazioni nucleari e nei decadimenti radioattivi. Diversamente da un neutrino normale pero’ che interagisce tramite la forza debole, queste nuove particelle dovrebbero essere influenzate solo dalla forza di gravita’ ed e’ per questo che hanno ricevuto il soprannome di “neutrini sterili”. Per analogia con i fotoni che sono i mediatori della forza elettromagnetica tra particelle, i neutrini sterili dovrebbero essere i mediatori delle interazioni tra particelle di materia oscura. E come per le particelle di materia oscura, anche la radiazione oscura non interagisce con la materia nominale. L’ultima possibile spiegazione e’ che la materia oscura interagisca piu’ fortemente con la materia nominale e/o la radiazione di quanto assunto fino ad ora. Al momento il team di Riess non ha una risposta al problema anche se sta continuando a raccogliere misure di stelle lontane per cercare di abbassare ulteriormente l’incertezza e migliorare la precisione sul valore della costante di Hubble.

Dove e’ possibile arrivare partendo da questo risultato?

Guardando i risultati ottenuti fino ad oggi e’ possibile come riportato da Riess, che l’energia oscura giochi un ruolo importante anche se e’ piu’ probabile che sia una qualche nuova particella o qualche cosa che ha a che fare con come interagisce la materia oscura. Normalmente quest’ultima viene considerata come costituita da WIMP, cioe’ da particelle pesanti che interagiscono debolmente con la materia nominale. Bene e’ possibile che l’interazione in fin dei conti non sia cosi debole come pensato. Questo potrebbe cambiare le cose e dare origine ad un qualche cosa simile all’universo che vediamo noi.

E se lo dice il premio Nobel Riess forse c’e’ da credere. Aspettiamo con impazienza le prossime scoperte. Fate le vostre scommesse. La fisica sta diventando misteriosa e magica.

domenica 25 febbraio 2018

Come torturare i dati per farli parlare

Il post di oggi e’ anomalo. Non si tratta del solito articolo. Ma di due presentazioni fatte alcuni anni fa per introdurre le tecniche di data mining/machine learning e  un ottimo software free (Orange) che ognuno puo’ scaricare ed utilizzare per fare un po’ di pratica. In queste slides vengono descritti i concetti base del machine learning, delle tecniche analitiche e del data mining quali decision tree, clustering, analisi di Bayes, association rules, self organizing maps, supported vector machines, random forest etc . L’idea alla base di queste due presentazioni è stata quella di introdurre i partecipanti (adesso i lettori del blog) nel mondo degli algoritmi sviluppati dalla cosiddetta computer science di cui tanto si sente parlare in ambiti quale l’internet delle cose, automobili senza guidatori, robots, droni  solo per citarni alcuni.

Il machine learning e’ fondamentale nello studio dei sistemi complessi in cui a causa dell’elevato numero di componenti e delle loro interazioni fortemente non lineari non si possono modellizzare facilmente. L’unica possibilita’ e’ quella di mettere al lavoro gli analytics oggi disponibili per cercare nella vasta mole dei dati le relazioni fondamentali, i patterns piu’ importanti, le informazioni nascoste come pepite all’interno delle miniere. Gli algoritmi di machine learning permettono di tirare fuori dai dati le informazioni utili riducendo in modo opportuno il volume dei dati. Pensate ad una piramide. Man mano che si sale verso l’alto, cioe’ man mano che il volume diminuisce emerge l’informazione.  MI fermo qui e vi lascio alle circa 200 slides. Buona lettura.  

Data mining e machine learning

Introduzione ad Orange


image

domenica 28 gennaio 2018

Gallerie spazio-temporali per unire relativita’ e quantizzazione


Nel 1935, alcuni fisici pubblicarono due articoli in cui venivano introdotti due concetti chiave dell’attuale cosmologia: l’entaglement e i wormholes.

Vediamo un attimo di cosa si tratta partendo dall’entaglement. Secondo la meccanica quantistica, le particelle entagled rimangono connesse tra loro anche se si trovano a distanze quasi infinite. Qualsiasi azione eseguita su una delle due particelle influenza il comportamento dell’altra. Questo significa per esempio che se in seguito ad una misura dello spin di una delle due particelle lo si trova up, quello dell’altra anche se misurato un’istante dopo sara’ down. Lo spin in meccanica quantistica e’ una grandezza fisica associata alle particelle e che ne definisce il loro stato quantico. Questa grandezza e’ una forma di momento angolare, avendo in comune la stessa dimensione. Per analogia richiama alla mente la rotazione di una particella intorno al proprio asse.

L’entaglement ha luogo quando le particelle interagiscono tra loro fisicamente. Per esempio un laser colpendo un particolare tipo di cristallo puo’ generare coppie di fotoni entagled che pur allontanandosi tra loro sempre di piu’ rimangono in connessione. Questa teoria che irrito’ non poco Einstein e’ anche riferita come “la spaventosa azione a distanza”. Come e’ possibile che due particelle anche a distanze enormi possano influenzarsi a vicenda subito se qualsiasi segnale nell’universo non puo’ viaggiare a velocita’ maggiore di quella della luce?

clip_image002

Passiamo adesso ai wormhole. Grazie alla teoria di Einstein oggi sappiamo che la trama del nostro universo e’ lo spazio-tempo. Esso puo’ essere deformato e distorto. Per fare questo lo spazio-tempo ha bisogno di grandi quantita’ di massa o di energia, ma teoricamente queste distorsioni sono possibili. Nel caso di un wormhole, si tratta di una scorciatoia ottenuta grazie alla deformazione del tessuto spazio-temporale. Immaginiamo di disegnare due punti su di un foglio di carta e di misurarne la distanza. Adesso pieghiamo il foglio in due sovrapponendo i due punti e attraversandoli con una penna. La distanza tra essi e’ decisamente inferiore a quella di prima. E’ esattamente quello che succede con un wormhole. Il problema di queste strutture e’ che essi sono instabili. Quando una particella vi entra dentro crea delle fluttuazioni che fanno collassare la struttura.
clip_image004
Nel 2013 Leonard Susskind un fisico di Stanford e Juan Maldacena dell’Advanced Study of Princeton hanno ipotizzato che questi due fenomeni siano la stessa cosa e questo potrebbe creare un ponte tra la teoria della relativita’ generale e la meccanica quantistica. Uno dei problemi più difficili che la fisica oggi si trova ad affrontare riguarda proprio queste due teorie  che funzionano perfettamente nel loro dominio di validita’ e che vanno invece in conflitto quando si cerca di combinarle. Susskind e Maldacena hanno riassunto il tutto in un’equazione: ER=EPR.
Non si tratta di un’equazione numerica, ma piuttosto di un’equazione con le iniziali dei nomi di alcuni importanti fisici teorici.
Nella parte a sinistra, ER stanno ad indicare Einstein e Nathan Rosen che in un articolo del 1935 descrissero la struttura dei wormhole, noti tecnicamente come ponti di Einstein-Rosen. A destra, invece, EPR stanno per Einstein, Rosen e Boris Podolsky, quest’ultimo co-autore di un altro articolo di quello stesso anno in cui veniva descritto l’entanglement quantistico. L’equazione semplicemente getta un ponte tra i wormhole e l’entaglement. E questa connessione potrebbe spiegare la continuita’ dello spazio tempo che diventerebbe cosi la manifestazione geometrica dell’entaglement.

clip_image006
Susskind va oltre e pensa che l’entaglement quantistico sia una forma di informazione, una stringa di 1 e di 0, e che quindi lo spazio tempo altro non sia che una manifestazione dell’informazione quantistica. Il principio ER=EPR, getta le basi per lo sviluppo della gravita’ quantistica anche se al momento non e’ chiaro come. E’ possibile che quando in laboratorio creiamo per esempio dei fotoni entangled questi siano connessi tramite un microscopico wormhole? Al momento nessuno lo sa anche se e’ affascinante pensare di si. In un nuovo articolo Susskind propone uno scenario dove ipotizza che delle particelle inizialmente entagled (correlate) si muovano in direzioni opposte dell’universo. Una volta lontane tra loro queste particelle collassano in buchi neri soggette alla loro stessa forza di gravita’. Secondo Susskind questi due buchi neri sono a loro volta connessi (entangled) tramite un gigantesco wormhole che attraversa l’universo da una parte all’altra. Dunque se l’equazione ER=EPR e’ giusta vuol dire che i due buchi neri saranno collegati da un gigantesco tunnel spazio temporale e l’entaglement altro non e’ che la descrizione geometrica di tali oggetti.
Teoria a dir poco sbalorditiva. Ma c’e’ la possibilita’ di provarla? Difficile dirlo. Di sicuro ci sono sempre piu’ ricercatori che iniziano a studiare questa ipotesi ed e’ possibile che in un prossimo futuro si riesca a gettare luce su uno dei misteri della Natura che assilla le menti di molti scienziati da quasi un secolo.
Secondo Susskind, “sembra ovvio che se ER = EPR è vera, allora siamo di fronte a qualcosa di grosso che potrebbe influenzare le fondamenta e le interpretazioni della meccanica quantisica. Se ho ragione, la meccanica quantistica e la gravità sono ancora di più correlate di quanto (almeno io) abbiamo mai pensato”.
https://arxiv.org/pdf/1707.04354
https://arxiv.org/pdf/1306.0533.pdf
https://arxiv.org/pdf/1604.02589

venerdì 10 novembre 2017

Dallo spazio nuove informazioni sulla piramide di Cheope

La notizia e’ di qualche giorno fa. La soluzione alla fine e’ arrivata dallo spazio nonostante gli sforzi fatti dal califfo Ma’mun intorno all’ 820, dagli avventurieri europei del 800 o dai moderni esploratori di oggi. Un team di fisici (ScanPyramid2017) utilizzando i prodotti delle reazioni dei raggi cosmici con l’atmosfera terrestre ha scoperto una camera al di sopra della Grande Galleria nella piramide di Cheope. I raggi cosmici sono delle particelle energetiche che bombardano continuamente la Terra e provengono dallo spazio esterno. La loro natura e’ varia come anche la loro origine. Il loro spettro energetico e’ distribuito su 14 ordini di grandezza come mostrato qui di seguito dove viene riportato il flusso (numero di muoni per unita’ di superficie, per unita’ di angolo, per unita’ di tempo e per unita’ di energia) in funzione dell’energia. La parte colorata in giallo si pensa provenga dal sole, quella azzura che sia di origine galattica (la nostra Via Lattea) e quella in viola di origine extragalattica.




clip_image001
Al di sopra dell’atmosfera, i raggi cosmici sono costituiti per circa il 90% da protoni, e per il circa 10% da nuclei di elio. Dopo l’interazione di queste particelle primarie con l’atmosfera terrestre si creano degli sciami di nuove particelle tra cui mesoni, neutroni, protoni ed elettroni. I mesoni a loro volta subito decadono in muoni, particelle elementari con una massa circa 200 volte maggiore di quella dell’elettrone e una vita media di circa 2 microsecondi. Esistono in due stati di carica (positiva e negativa) e sono soggetti oltre all’interazione gravitazionale a quella debole e quella elettromagnetica. La velocita’ con la quale arrivano al livello del mare e’ quasi prossima a quella della luce.


clip_image003
I muoni fanno parte della cosiddetta componente dura della radiazione secondaria dei raggi cosmici, in quanto riesce a penetrare spessori di materiale di oltre un metro. Ed e’ proprio grazie a questo tipo di particelle penetranti molto piu’ dei noti raggi X, che e’ stato possibile stabilire con buona accuratezza che al di sopra della grande galleria della piramide di Cheope ci sia una seconda camera lunga circa 30 metri. I due colori rosso e blu dell’immagine di seguito indicano la possibile orientazione di questa nuova camera.

clip_image007Gli antichi Egizi edificarono le piramidi non solo come tombe dei faraoni, ma anche come luogo di culto per il Sole. Si dice che gli angoli delle piramidi rappresentino una proiezione dei raggi del Sole che scendono sulla Terra per elevare i faraoni verso il cielo. Nella piana di Giza, oltre alla Sfinge, ci sono le piramidi di Kefren, Micerino e quella di Cheope, l’unica meraviglia del mondo antico conservatasi fino ai giorni nostri e che da sempre ha affascinato gli studiosi perche’ ancora oggi non e’ chiaro come sia stata edificata. Secondo l’egittologia classica essa venne costruita dal faraone Khufu (anche conosciuto come Cheope) tra il 2509 e il 2483 AC con dei blocchi di granito e calcare e con un’altezza di circa 140 metri. In origine, era coperta da un rivestimento in pietra che formava una superficie esterna liscia; ciò che si vede oggi è la struttura di base sottostante. Alcune delle pietre del rivestimento che un tempo ricoprivano la struttura sono ancora visibili attorno alla base. Ci sono state diverse teorie scientifiche e alternative circa le tecniche di costruzione della Grande Piramide. Le ipotesi di costruzione più accreditate si basano sull'idea che la piramide sia stata edificata spostando da una cava enormi blocchi che una volta trascinati siano stati sollevati in posizione. Si e’ sempre pensato che questa piramide avesse tre stanze: la camera sotterranea, la camera della regina e la camera del re. Queste camere sono connesse tra loro da diversi corridoi, di cui la Grande Galleria e quello piu’ importante. Tutto questo fino all’arrivo della nuova scoperta. clip_image009Per vedere attraverso la piramide, i ricercatori hanno usato una tecnica sviluppata dai fisici delle alte energie che sfruttano degli appositi rivelatori per segnalare il passaggio dei muoni. In pratica si tratta di una radiografia che invece di utilizzare i raggi X adatti per le ossa, usano i muoni, particelle che ci bombardano quotidianamente ad un ritmo di circa 10000 per minuto e per metro quadro. Questa tecnica e’ stata usata con successo per lo studio di vulcani e per individuare tra l’altro i danneggiamenti prodotti dal reattore nucleare di Fukushima in Giappone giusto per fare qualche esempio.
Nel 2015, il professore Kunihiro Morishima dell’universita’ giapponese con un suo team di ricercatori, piazzo’ dei rivelatori all’interno della camera della regina, allo scopo di rivelare il passaggio dei muoni dall’alto della piramide. Ovviamente queste particelle vengono parzialmente assorbite o deviate dalla pietra sovrastante la camera della regina, in modo che ogni cavita’ nella piramide dovrebbe permettere a piu’ muoni di raggiungere i rivelatori. Il flusso integrato di muoni I(rho,theta) raccolti dai rivelatori e’ dato dalla formula:

clip_image010

dove I e’ il numero di muoni che arrivano al rivelatore per unita’ di area, di angolo e di tempo (cm-2 sr-1 sec-1). Emin rappresenta l’energia minima necessaria ad un muone per attraversare la roccia di densita’ rho prima di colpire il rivelatore. E’ in questa variabile che entra in gioco la composizione del materiale che viene attraversato dai muoni, e che nel nostro caso e’ la roccia della piramide. La quantita’:
clip_image011
rappresenta lo spettro dei muoni incidenti con un’energia E0 e ad un angolo theta, cioe’ il numero di muoni per unita’ di energia, per unita’ di angolo per unita’ di area e per unita’ di tempo. Questa funzione puo’ avere diverse forme a secondo del modello utilizzato. Qui di seguito un esempio di flusso integrato dei muoni in funzione della lunghezza (in metri di roccia equivalenti) della roccia attraversata ad un particolare angolo di incidenza per diversi modelli di spettro muonico phi (Gaisser/Music, Reyna/Bugaev, Reyna/Hebbeker).clip_image013Dopo alcuni mesi di raccolta dati, ci fu il sospetto che potesse esserci realmente una cavita’ al di sopra della grande galleria. Per questo motivo altri 2 teams di ricercatori franco-giapponesi entrarono nel progetto piazzando altri rivelatori all’interno e all’esterno della grande piramide. I risultati pubblicati su Nature alcuni giorni fa sono esattamente il resoconto del lavoro di questi 3 teams negli ultimi 2 anni. Qui di seguito delle immagini dei rivelatori usati in diversi punti della piramide. Si tratta di 3 tipi diversi di rivelatori. I primi due a partire dalla sinistra sono dei rivelatori ad emulsione, mentre gli ultimi due sono dei rivelatori scintillanti e a gas rispettivamente.


clip_image015I rivelatori ad emulsione sono stati realizzati usando un film fotografico speciale capace di rivelare i muoni come si vede nell’immagine seguente. Il film fotografico e’ realizzato con cristalli di bromuro di argento del diametro di 200 nm coperti poi con un film di polistirene trasparente. Quando la particella passa attraverso lo strato di emulsione (vedi immagine c) la sua traiettoria tridimensionale viene registrata e puo’ essere rivelata grazie allo sviluppo fotografico successivo. Grazie alla conoscenza precisa della dimensione e struttura dei grani di bromuro di argento, le tracce delle particelle possono essere ricostruite con un accuratezza minore del micron.


clip_image017

clip_image019I risultati ottenuti in due diversi punti della piramide indicati con NE1 ed NE2 nei due anni di collezionamento dati (a e b qui sotto) sono stati confrontati con quelli ottenuti da simulazione Montecarlo considerando la struttura della piramide oggi conosciuta (c e d). Questi confronti mostrano chiaramente che le strutture conosciute si vedono dove ci si aspetta di vederle e che in piu’ si nota un chiaro segnale di muoni in eccesso (scritta new void). La quantita’ di muoni in eccesso e’ paragonabile a quella generata dalla grande galleria e quindi e’ logico pensare che la dimensione di questa nuova camera sia confrontabile a quella della grande galleria.

clip_image021
clip_image023Oltre alle emulsioni sono stati utilizzati anche dei rivelatori a scintillazione. Si tratta di 4 strati di scintallatore plastico ognuno costituito da 120 barre di 1x1 cm2. Ricordiamo che uno scintillatore e’ un materiale capace di emettere luce visibile o ultravioletta quando viene attraversato da particelle cariche o fotoni. Qui di seguito le immagini ottenute in due posizioni diverse H1 e H2 della piramide e con c e d le immagini ottenute con la simulazione Montecarlo. Come per le emulsioni si nota un chiaro segnale che indica una regione vuota al di sopra della grande galleria (e ed f).clip_image025La terza specie di rivelatori utilizzata per l’esperimento e’ stata quella a gas. Quando una particella entra nel serbatoio contenente il gas lo ionizza e gli elettroni strappati vengono spinti verso l’elettrodo a potenziale positivo. In prossimita’ di questo gli elettroni riescono a creare delle vere e proprie valanghe ioniche che colpiscono il rivelatore.clip_image026Si tratta di rivelatori molto robusti che possono essere utilizzati anche all’esterno. Ognuno di questi rivelatori e’ costituito da 4 aree attive identiche di dimensione 50x50 cm2. Essi sono stati piazzati di fronte alla faccia nord della piramide, puntati nella direzione della grande galleria. Dopo 2 mesi di acquisizione dati si ‘ registrato un eccesso significativo di muoni che avevano colpito i rivelatori a gas confermando ancora una volta la presenza di un vuoto al di sopra della galleria. Qui di seguito le immagini in 2D in due posizioni diverse (vedi h) con due chiari picchi nel segnale (b,c,e,f) che indicano la grande galleria e la nuova stanza al di sopra di essa.clip_image028
clip_image030
Tutte e tre le tecniche hanno confermato lo stesso risultato: la presenza di un vuoto localizzato tra 40 e 50 m dal pavimento della camera della regina. La sua lunghezza e’ piu’ di 30 m e la sua forma e’ simile a quella della grande galleria. Di sicuro questa scoperta mostra come i metodi sviluppati nell’ambito della fisica delle particelle puo’ gettare una luce sulle costruzioni antiche piu’ importanti e di sicuro in futuro richiedera’ una maggiore collaborazione interdisciplinare per cercare di capire meglio la grande piramide e di come essa fu costruita. Questo annuncio di sicuro ha gettato scompiglio tra gli egittologi di mezzo mondo facendo riemergere tante domande da tempo senza risposte. Questa stanza segreta contiene il tesoro che da millenni ci cerca nella piramide? Nasconde la tomba di Cheope la cui mummia non e’ mai stata trovata? Rivelerà finalmente i misteri della costruzione del più imponente edificio dell’antichità? Mehdi Tayoubi, presidente dell’ Heritage Innovation Preservation del Cairo che ha avviato la ricerca invita tutti ad essere prudenti: "Ci sono molte teorie, alcune pazze e altre ragionevoli, ma è troppo presto per qualunque conclusione." Mark Lehner, direttore dell' Ancient Egypt Research Associates di Boston, ritiene che “dal momento che è impossibile arrivarci, è improbabile che si tratti di una camera di sepoltura: non è il luogo dove gli egizi avrebbero potuto mettere un corpo”. E allora forse, quella cavità ha un significato simbolico, una sorta di luogo di passaggio verso l’oltretomba. Un’altra ipotesi è che si tratti solo una "soluzione ingegneristica" per alleggerire il peso dei blocchi di pietra che si trovano sopra la grande galleria, al fine di prevenire un collasso. A questo punto non ci resta che aspettare. Ai posteri l’ardua sentenza.




http://www.wikio.it