Appunti di viaggio di un fisico curioso...... della bellezza di tutto quello che ci circonda,dell'irragionevole efficacia della matematica nello spiegare il mondo intorno a noi, della continua lotta della vita tra ordine e caos, curioso dell'emergenza della complessita' da regole elementari e tant'altro....... Sara' un viaggio divertente e spero ricco di sorprese.
venerdì 10 novembre 2017
Dallo spazio nuove informazioni sulla piramide di Cheope
domenica 3 settembre 2017
La persistenza P ed S di un numero primo
In [1], Sloane ha definito la persistenza moltiplicativa di un numero intero nel modo seguente:
Sia N un qualsiasi numero intero positivo con n-cifre in base 10, N=x1x2x3…xn. Moltiplicare tutte le cifre del numero x1x2x3…xn, ottenendo un nuovo numero N’. Se il processo viene reiterato eventualmente si arriva ad un numero ad una sola cifra. Il numero di passaggi necessari per raggiungere un numero a singola cifra e’ chiamata persistenza del numero N. Qui un esempio:
679, 378, 168, 48, 32, 6
In questo caso la persistenza del numero N=679 e’ 5.
Naturalmente questo concetto puo’ essere esteso a qualsiasi base. In [1], Sloane ha congetturato che, in base 10, c’e’ un numero c tale che nessun numero intero positivo ha persistenza piu’ grande di c. Questa congettura grazie ad una ricerca fatta al computer e’ stata provata essere vera per tutti I numeri piu’ piccoli di 10233. La persistenza piu’ alta trovata al momento e’ 11.
Osserviamo che la persistenza di un qualsiasi numero con cifra zero sara’ sempre uguale ad 1 essendo il prodotto uguale a zero. Un umero intero con delle cifre uguali a 1 ha la stessa persistemza del numero intero ottenuto rimuovendo le cifre 1.
911311111 per esempio ha persistenza pari a 3 in quanto abbiamo 27, 14, 4. Lo stesso risultato e’ ottenuto se partiamo col numero 93. Provare per credere.
I numeri naturali ottenuti con la permutazione delle stesse cifre hanno la stessa persistenza (3474, 3744, 4347…ecc). Ancora un’altra proprieta’. Due numeri hanno la stessa persistenza se essi hanno gli stessi fattori primi delle loro cifre. Consideriamo i numeri 479 e 667.
4 puo’ essere scomposto come 2x2, 7 e’ primo e 9 e’ 3x3. Quindi abbiamo due volte 2, due volte 3 e un 7. Passiamo adesso a 667. Abbiamo i seguenti fattori primi per le 3 cifre: 2x3, 2x3 e 7. Abbiamo due volte 2, due volte 3 e un 7. Esattamente come per il numero 479. Questo significa che 479 e 667 hanno la stessa persistenza. Altra osservazione. Un qualsiasi numero con fattori primi delle cifre 2 e 5 che non contiene la cifra zero, avra’ sempre persistenza pari a 2. Esempio:
453 ha come fattori primi delle cifre 2x2, 5, 3 e la sua persistenza e’ pari a 2 in quanto 453, 60, 0.
Una variante della definizione di Sloane e’ la persistenza k-moltiplicativa [4]; in questo caso si moltiplicano tra di loro non le cifre ma la potenza k-esima delle cifre e si definisce come persistenza k-moltiplicativa il numero di passi necessari per arrivare a 0 o a 1. Evidenze di tipo euristico (prima o poi comparira’ uno 0 o una combinazione di 5 con una cifra pari) sembrano indicare che tutti i numeri naturali convergano a 0 ad eccezione dei numeri cosiddetti repunit (tutte le cifre uguali a 1) che chiaramente convergeranno sempre ad 1 in un solo passo. Qui di seguito la tabella che riporta la persistenza k-moltiplicativa dei numeri naturali fino a 20 per valori di k fino a 10 [4].
Come esempio facciamo vedere che la persistenza del numero 2 ha una persistenza 2-moltiplicativa pari a 7; infatti:
2, 2^2=
In [2], Hinden ha definito in modo analogo la persistenza additiva di un numero dove, invece della moltiplicazione, e’ stata considerata l’addizione delle cifre del numero considerato, Per esempio, la persistenza additiva del numero N=679 e’:
679, 22, 4
Seguendo la stessa filosofia dei due autori citati, in questo post voglio introdurre due nuovi concetti: la persistenza-P ed S di un numero primo. Sia X un qualsiasi numero primo e supponiamo che X=x1x2x3…xn in base 10.
Se moltiplichiamo insieme le cifre del primo x1x2x3…xn e aggiungiamo il numero originale otteniamo X+x1x2x3…xn che potra’ o no essere un numero primo. Nel caso in cui risulta essere primo allora il processo verra’ reiterato altrimenti no. Il numero di passaggi richiesti ad X per collassare in un numero composto (cioe’ non primo) viene chiamata la persistenza-P del primo X. In altri termini, se indichiamo con f la mappa che proietta un numero primo nell’insieme dei numeri naturali attraverso la somma del numero primo iniziale e il prodotto delle sue cifre, cioe’ f(p)=p+p1p2p3..pn, la persistenza di p e’ quante volte applichiamo f prima di arrivare ad un numero composto.
Come esempio calcoliamo la persistenza-P dei primi 43 e 23:
43, 55
23, 29, 47, 75
che risulta essere 1 e 3, rispettivamente. Ovviamente la persistenza-P di un numero primo X diminuita di 1 e’ uguale al numero di primi che sono stati generati dal numero originale X. Osserviamo che se la persistenza di un numero primo p qualsiasi dispari e’ essa stessa dispari allora la persistenza-P di tale primo non puo’ essere che 1. Essendo tutti i numeri primi ad eccezione del 2 dei numeri dispari che terminano con le cifre 1,3,7,9 allora se l’ultima cifra del numero primo iniziale p e del prodotto delle sue cifre danno come somma 5 di sicuro la persistenza del numero primo p e’ pari ad 1. Questo accade quando il prodotto delle cifre del numero primo ha come ultima cifra 2,4,6 o 8. Per esempio la persistenza-P del numero primo 41 e’ 1 essendo l’ultima cifra del prodotto delle sue cifre uguale a 4. E la somma delle ultime cifre di 41 e del prodotto delle sue cifre 4*1=4 e’ pari a 5.
Prima di andare avanti, e’ conveniente evidenziare che ci sara’ una classe di numeri primi con persistenza-P infinita cioe’ primi che non collasseranno mai in un numero composto. Diamo un esempio:
61, 67, 109, 109, 109…
In questo caso, poiche’ il prodotto delle cifre del numero primo 109 e’ sempre zero non si raggiungera’ mai un numero composto. In questo post, non considerero’ questa classe di numeri. La tabella seguente riporta i primi con almeno due cifre con persistenza-P minore o uguale a 8:
Dai dati di questa tabella possiamo vedere che, per esempio, il secondo termine del numero primo 29 e’ all’interno della sequenza generata dal numero primo 23. Infatti:
29, 47, 75
23, 29, 47, 75
In questo caso significa che esistono due primi p e p’ con p’>p tali che il prodotto delle cifre di p sommate a p stesso e’ uguale alla differenza tra p’ e p cioe’ f(p)=p’-p. Essendo p e p’ entrambi dispari questo puo’ accadere solo se f(p) e’ un numero pari, il che e’ vero solo se tra le cifre di p c’e’ almeno una cifra pari.
E’ possibile modificare, allora la tabella precedente per evitare quei numeri primi che implicitamente sono all’interno delle sequenza di altri primi.
Questo significa che il primo 163 generera’ una catena che non e’ contenuta all’interno della catena generata da nessun altro primo contenuto nella tabella.
Esistono numeri primi con persistenza-P maggiore di 8? Sono infiniti o limitati superiormente?
Cerchero’ di dare una risposta usando un approccio statistico e non rigorosamente matematico. Indichiamo con L la persistenza-P di un numero primo. Grazie al software Ubasic ho calcolato la frequenza di L per diversi valori di N. Qui di seguito il grafico per due valori di N: 107 e 108.
La funzione interpolatrice di questa famiglia di curve e’ data da:
dove a(N) e b(N) sono due funzioni di N.
Da questi dati si vede che:
dove k, h e c sono delle costanti. Ricordandoci la definizione di probabilita’ (numero di casi favorevoli su casi totali) che nel caso di funzioni continue si esprime come l’integrale della funzione di densita’, possiamo scrivere che la probabilita’ che L>=M (dove M indica un qualsiasi intero) per un N fissato e’ data da:
e da qui e’ possibile ricavare la funzione di conteggio dei numeri primi con persistenza-P uguale a M e minore di N data da N*P(L=M). E’ come chiedersi lanciando 100 una moneta quante volte mi aspetto che venga fuori testa. Dobbiamo moltiplicare il numero di prove per la probabilita’ che esca testa.
Nel grafico che segue viene riportata questa funzione per 4 diversi valori di L. Per L< 15 e L>=15 c’e’ una rottura nel comportamento della funzione. Per L>=15 il numero di primi e’ molto piccolo (meno di 1) indipendentemente dal valore di N e diventa ancora piu’ piccolo come N che aumenta. Questi dati sperimentali sembrano quindi indicare che L non puo’ prendere qualsisi valore e che molto probabilmente L=14 e’ proprio il valore massimo. Quindi possiamo stabilire la seguente congettura:
Congettura1. Non esiste nessun numero primo con persistenza-P maggiore di un intero M. In altre parole la persistenza P di un numero primo e’ finita.
Seguendo un’argomentazione simile a quella usata per la persitenza-P, e’ possibile definire la persistenza-S di un primo. Si tratta del numero di passi da effettuare utilizzando questa volta la somma anziche’ il prodotto delle cifre, prima che un numero primo collassi in un numero composto. Per esempio la persistenza-S del numero primo 277 e’:
277, 293, 307, 317, 328
In questo caso la persistenza-S e’ uguale a 4. La sequenza dei numeri primi con almeno due cifre e con persistenza-S uguale a 1, 2, 3, 4… fino a 8 e’ stata stabilita da Carlos Rivera [3]:
Al momento non e’ stato trovato alcun numero primo con persistenza-S maggiore di 9. Il numero primo piu’ piccolo con tale persistenza e’ stato trovato da Giovanni Resta (56676324799) [3]. Seguendo l’approccio statistico utilizzato prima si arriva ad un risultato analogo a quello della persistenza-P anche per la persistenza-S. (vedere [3] per i dettagli).
Visto che per entrambe la persistenza-P e S si ottiene lo stesso risultato statistico e’ possibile formulare la seguente congettura:
Congettura 2. Il valore massimo della persistenza P ed S e’ la stesso.
Chiudo qui il post invitando chiunque voglia divertirsi con questi concetti a farsi avanti e cercare di dare una risposta ai tanti quesiti ancora aperti. Buon divertimento.
Riferimenti
[1] N. Sloane, “The persistence of a number”, J. Recreational Mathematics, Vol 6, No 2, Spring 1973
[2] Hinden, H. J. "The Additive Persistence of a Number." J. Recr. Math. 7, 134-135, 1974.
[3] C. Rivera, Puzzle 163: P+SOD(P), http://www.primepuzzles.net/puzzles/puzz_163.htm
[4] M. Fiorentini, Numeri persistenti, http://www.bitman.name/math/article/1026
martedì 22 agosto 2017
I numeri intoccabili
dove x e’ un qualsiasi numero reale o complesso e
d|n
Facciamo un esempio. Consideriamo n=12. In questo caso avremo:
mentre la somma di tutti i divisori sara’:
e la somma aliquota, cioe’ la somma dei divisori propri:
Qui una tabella riassuntiva dei primi 16 numeri interi:
da cui otteniamo:
σ1(pn)-pnq=1+p+p2+p3+….+pn+q+pq+p2q+…+pn-1q
e quindi di sicuro il numero:
1+p+p2+p3+….+pn+q+pq+p2q+…+pn-1q
non e’ intoccabile. Provate a sostituire p=2, n=3 e q=3 per convicervi che e’ cosi.
http://oeis.org/
http://www.openproblemgarden.org/category/number_theory_0
http://math.ucalgary.ca/math_unitis/profiles/richard-guy
lunedì 24 luglio 2017
Dai bosoni W/Z all’archeologia
L'osservazione diretta del bosone W è avvenuta nel gennaio del 1983 grazie all'utilizzo dell'acceleratore SPS (Super Proton Synchrotron) del CERN durante gli esperimenti UA1 (condotto dal premio Nobel Carlo Rubbia) e UA2, realizzati grazie agli sforzi di una grande collaborazione di scienziati. Pochi mesi più tardi avvenne anche l'osservazione del bosone Z. Il decadimento beta e’ uno di tre possibili tipi di decadimento radioattivo da parte dei nuclei instabili: decadimento alfa, decadimento beta e decadimento gamma. Nel primo caso si tratta dell’emissione di un nucleo di He (due protoni e due neutroni) da parte del nucleo, nel secondo caso come gia’ detto dell’emissione di un elettrone e nel terzo caso di una diseccitazione del nucleo tramite emissione di un fotone gamma energetico. Per ogni valore di massa atomica A vi sono uno o piu’ nuclei stabili.
Per i nuclei instabili il numero di decadimenti al secondo definisce l’attivita’ radioattiva di un materiale, quantita’ indipendente dal tipo di decadimento o dall’energia della radiazione emessa. Contrariamente al decadimento beta in cui avviene la trasformazione di un protone in un neutrone e viceversa, il decadimento alfa e’ un esempio del cosiddetto effetto tunnel previsto dalla meccanica quantistica. Il nucleo puo’ essere modellizzato come una buca di energia all’interno della quale si trovano intrappolati i nucleoni. L’altezza di questa barriera dipende dal rapporto Z/R dove Z e’ il numero di protoni e R il raggio del nucleo. I nucleoni non hanno abbastanza energia per superare la barriera ma possono liberarsi perforandola se questa e’ abbastanza sottile.
Il decadimento beta e’ quello che subisce, insieme a tanti altri, un elemento della nostra tavola periodica alla base della nostra vita: il carbonio.
dove ave e’ l’antineutrino elettronico. La disintegrazione di un nucleo radioattivo e’ un processo statistico e segue le regole dei fenomeni casuali: non e’ possibile in nessun modo sapere quando un nucleo radioattivo si disintegrera’. Tuttavia, anche in presenza di pochi milligrammi di sostanza radioattiva abbiamo a che fare con milioni se non anche miliardi di atomi, per cui da un punto di vista statistico e’ possibile conoscere con buona precisione quanti (ma non quali) di essi si disintegreranno in un certo intervallo di tempo. Il numero di disintegrazioni che avvengono nell’unita’ di tempo viene definito come l’attivita’ della sorgente radioattiva. L’attivita’ si misura in Bequerel che corrisponde ad 1 disintegrazione per secondo. Data una sorgente radioattiva che non scambia materia con l’esterno, mano a mano che i nuclei si disintegrano, il loro numero diminuisce, e quindi diminuisce la probabilita’ di disintegrazioni successive; la radioattivita’ quindi diminuisce allo stesso modo della concentrazione dei nuclei radioattivi. La velocita’ con cui decade un radioisotopo, non e’ costante ma varia nel tempo: man mano che la concentrazione diminuisce, anche la velocita’ diminuisce, per cui il decadimento di un radioisotopo segue una curva di tipo esponenziale.
Se come fatto per il decadimento alfa, modelliziamo il decadimento beta con una buca di potenziale, e’ possibile immaginare che la particella beta sia all’interno del nucleo e continuamente sbatta sulle pareti della buca cercando di uscire fuori. La probabilita’ che questo avvenga e’ molto bassa ma non zero. Per il decadimento del 14C e’ di 3.83*10-12 sec-1. Questo significa che in circa 32000 anni avremo quasi 4 disintegrazioni o allo stesso modo che la probabilita’ per un nucleo di 14C di decadere in un tempo dt e’ data da:
dove lambda e’ proprio la probabilita’ di decadimento per unita’ di tempo. Supponendo di avere N atomi di carbonio 14 ad un istante to, il numero di decadimenti avvenuti nell’intervallo dt successivo e’ dato da:
Integrando ambo i membri si ottiene l’equazione cercata:
dove No e’ il numero iniziale di atomi 14C e N(t) il numero di 14C ancora non disintegrati. La differenza tra questi due numeri da’ il numero di atomi che si sono disintegrati nell’intervallo di tempo t. Si definisce tempo di dimezzamento del nucleo radioattivo di un certo tipo, il tempo che occorre perche’ il numero di questi nuclei diminuisca di un fattore 2, cioe’ perche’ il numero di questi nuclei passi da No a No/2. Usando l’equazione esponenziale del decadimento si ricava facilmente il tempo di dimezzamento dato da:
Maggiore e’ il valore della costante di decadimento minore sara’ il tempo di dimezzamento e piu’ velocemente i nuclidi iniziali si disintegreranno. Il Carbonio 14 ha un tempo di dimezzamento di 5730 anni e questo fa si che possa essere utilizzato come ottimo “orologio” per le datazioni archeologiche.
Purtroppo questo andamento non lineare della curva di calibrazione dovuto essenzialmente all’attivita’ solare che cambia nel tempo puo’ portare ad una datazione ambigua come il caso qui sotto dove un oggetto di circa 200 anni vecchio potrebbe essere fatto risalire intorno al 1650 o a circa il 1800.
Il sole produce il cosiddetto “vento solare” che deflette i raggi cosmici. I periodi di elevata attivita’ solare coincidono con una bassa produzione di 14C e viceversa come si puo’ vedere dal grafico seguente.
Un altro fattore che determina delle fluttuazioni del contenuto di 14C nell’atmosfera e’ il campo magnetico terrestre. La sua intensita’, infatti, modula la produzione del radiocarbonio in quanto il campo magnetico scherma l’atmosfera dal bombardamento dei raggi cosmici elettricamente carichi riducendo cosi il rapporto di 14C/12C.
I test nucleari in atmosfera sono un’altra sorgente di variabilita’ con un picco di 14C tra il 1950 e il 1960 con un raddoppiamento dell’attivita’ del radiocarbonio. Questa enorme quantita’ di radiocarbonio e’ stata gradualmente rimossa dall’atmosfera dai processi naturali.
La datazione radiocarbonica, come anticipato si ottiene confrontando la radioattività specifica del campione da datare con i corrispondenti valori di uno “standard moderno”. Esistono diversi tipi di standard moderno per il 14C ma quello piu’ in uso e’ il cosiddetto Standard Assoluto, costituito da legno del 1890, la cui radioattività specifica e’ riportata alla data convenzionale del 1950, in base al calcolo del decadimento radioattivo. Per lo Standard Assoluto (che a sua volta poi viene utilizzato per tarare gli Standard Primari), è stato scelto legname del 1890 perchè anteriore al XX secolo, durante il quale sono avvenuti, per mano dell’uomo, due fenomeni opposti e fortemente perturbatori della frazione di 14C nell’atmosfera:
Questo innesca una vera e propria valanga di elettroni che determina un segnale proporzionale all’energia della particella beta. Il metodo radiometrico è assai preciso quando si ha a disposizione una notevole quantità di materiale non eccessivamente antico, quando cioè c’è una sufficiente quantità di atomi di 14C e quindi di radioattività residua. Passiamo adesso al contatore a scintillazione. In questo caso il campione (benzene) viene miscelato con uno scintillatore liquido costituito da una soluzione contenente una sostanza organica fluorescente che quando viene colpita dalla radiazione beta ne assorbe l’energia per poi rilasciarla immediatamente sotto forma di impulso luminoso (scintilla). Il campione mescolato allo scintillatore viene posto in un boccettino trasparente ed inserito nell’apparato di conteggio (beta counter), dove un fotomoltiplicatore capta il “lampo” e lo trasforma in un segnale elettrico che viene “contato” da un contatore elettronico.
L’ultimo strumento e’ l’AMS cioe’ lo spettrometro di massa. In questo caso il materiale da misurare (campione da datare, standard moderno o “bianco”), sotto forma di piccolissime quantità di grafite (carbonio “puro”, depositato su dischetti di alluminio) viene bombardato, sotto vuoto, da un flusso di ioni di cesio positivi. le particelle ionizzate vengono fatte passare in un tubo curvato a formare un certo angolo (per esempio di 90°), alle estremità del quale è applicata una certa differenza di potenziale. Il tubo è immerso in un campo magnetico di intensità variabile: ad ogni suo valore, saranno solo le particelle di una certa massa ad uscire dall’estremità del tubo (le altre si perderanno “sbattendo” contro le pareti). In questo modo è possibile selezionare all’uscita del tubo particelle di diversa massa (spettrometria di massa). La spettrometria di massa è ampiamente utilizzata nei laboratori chimici (insieme ad altre tecniche analitiche) per individuare la struttura ed il peso molecolare delle molecole.