Molti di voi avranno sentito parlare della curvatura della luce da parte di un corpo massiccio come una stella. Fu Einstein con l’introduzione della relativita’ generale ad ipotizzare cio’. Ma come puo’ la massa curvare i fotoni della luce che non hanno massa? In effetti e’ la curvatura dello spazio tempo generato dalla presenza di una qualsiasi massa a curvare i raggi luminosi. Molti di voi avranno visto l’immagine sottostante che rappresenta l’ammasso di galassie chiamato Abell Cluster 2218.
Se guardate attentamente noterete degli archi che altro non sono delle galassie di fondo che vengono distorte ed amplificate dal gigantesco ammasso di galassie Abell. Quando la luce che proviene da sorgenti piu’ lontane dell’ammasso passano nelle sue vicinanze subisce una deflessione che crea gli archi e i filamenti che vediamo. Questo fenomeno e’ chiamato lente gravitazionale forte ed e’ uno degli spettacoli piu’ interessanti e belli dell’Universo. Sfortunatamente pero’ e’ un fenomeno molto raro. Infatti e’ molto difficile avere un allineamento tra la sorgente di luce e la massa che funziona da lente.
L’angolo di deflessione della luce verso la massa deflettente M e’ dato da:
dove G e’ la costante gravitazionale, r la distanza tra la massa M e il raggio di luce e c la velocita’ della luce. Questa semplice formula ci mostra come a partire dalla misura dell’angolo di deflessione dei raggi di luce e’ possibile risalire alla massa M del corpo deflettente.
Oltre alle lenti gravitazionali forti esistono anche quelle che chiamiamo lenti gravitazionali deboli sicuramente meno spettacolari di quelle forti ma che come vedremo ritornano utili per mettere in evidenza la materia oscura. Come molti di voi sapranno, la materia visibile presente nell’universo e’ solo una piccola parte di quella necessaria per giustificare l’universo cosi come lo vediamo oggi. Dall’osservazione delle galassie a spirali si e’ visto che la velocita’ in funzione della distanza dal punto centrale della galassia si mantiene pressocche’ costante mentre tenendo conto della sola materia visibile la curva sarebbe stata quella tratteggiata in blu (curva A).
Per risolvere questo enigma gli astrofisici hanno ipotizzato la presenza nell’intero universo di materia non visibile, cioe’ materia che non emette luce ma che esercita un’attrazione gravitazionale sulla materia circostante. Ad oggi nessuno sa di cosa sia composta realmente questa materia oscura. Ci sono diverse ipotesi ma nessuna di esse ha trovato conferma nella realta’. Vediamo adesso come le lenti gravitazionali ci possono dare una mano nella comprensione della materia oscura.
Nell’immagine qui sopra e’ simulata una parte del nostro universo. In esso possono esserci delle regioni ricche di materia dove grazie all’azione della gravitazione questa comincia a formare degli ammassi. Ci sono altre regioni dove invece c’e’ assenza di materia e si formano dei grandi vuoti, chiamati voids. Quando la luce proveniente da sorgenti al di la’ di questi ammassi arriva ai nostri telescopi, essa non forma immagini spettacolari come quelle delle lenti gravitazionali forti; accade comunque un qualche cosa di molto interessante che noi possiamo studiare. Vediamo di cosa si tratta.
Supponiamo di avere delle sorgenti luminose di forma sferica distribuite a caso e supponiamo che non ci siano oggetti massivi tra esse e i nostri telescopi. Quello che vedremmo e’ un qualche cosa del genere.
Cosa succede se tra queste sorgenti e noi inseriamo un qualche oggetto massiccio? Ricordiamoci che siamo nell’ipotesi di assenza di lenti gravitazionali forti e quindi non ci aspettiamo di vedere archi, filamenti, o anelli.
I risultati di una simulazione mostrano comunque che le sorgenti di luce vengono distorte dall’effetto lente gravitazionale debole. Da sfere diventano degli ellissoidi piu’ o meno schiacciati. Bene. Tutto quello che dovremmo fare e’ misurare quanto ellettiche sono le galassie e da questo ricavare le masse presenti tra queste sorgenti e i nostri telescopi. Purtroppo le galassie reali hanno forme diverse tra loro e non sono delle sfere perfette come abbiamo supposto. Quando guardiamo gli oggetti nell’Universo abbiamo sempre l’effetto combinato di una debole distorsione dovuta all’effetto lente gravitazionale e dell’intrinseca ellitticita’ delle galassie (chiamato shape noise). Qui sotto una simulazione che fa vedere la differenza tra il caso con galassie suppooste sferiche (without shape noise) e quelle con forme diverse ( with shape noise).
Tipicamente l’ellitticita’ intrinseca e’ maggiore della distorsione gravitazionale. Ad ogni modo la misura di tante galassie puo’ essere combinata per mediare questo rumore. L’orientazione dell’ellitticita’ intrinseca delle galassie dovrebbe essere quasi tutta randomica cosi che l’allineamento sistematico tra galassie multiple generalmente si puo’ assumere essere causato dal solo effetto lente.
Dalla misura dell’elletticita’ indotta dalla gravitazione e’ possibile risalire alla densita’ di materia visibile e non, presente tra le sorgenti di luce e noi sulla Terra.
Il confronto tra la distribuzione della materia oscura mappata con la tecnica del lensing debole, la distribuzione della materia visibile e quella dei raggi X rivela interessanti interconnessioni tra la materia oscura e i componenti delle stelle e dei gas. Un esempio molto famoso e’ il cosiddetto Bullet Cluster che dista da noi circa 3,4 miliardi di anni luce. Quest’immagine e’ stata realizzata sovrapponendo alle galassie visibili nell’ottico, due nuvole di raggi X emesse da gas caldi e mostrate in rosso. Oltre alle masse visibili delle galassie e dei gas che emettono i raggi X c’e’ da aggiungere la materia oscura rappresentata come un alone blu.
Gli astrofisici pensano che il Bullet Cluster si sia formato dallo scontro di due ammassi che hanno separato la materia oscura da quella barionica. L’osservazione dei raggi X mostra come la maggior parte della materia barionica del sistema e’ concentrata nel suo centro. Notare che la radiazione X e’ molto vicina al centro del sistema in quanto nel passare uno attraverso l’altro i due ammassi hanno rallentato le particelle di gas. Questo invece non e’ successo ai due aloni di materia oscura che risiedeva attorno ai due ammassi prima dello scontro e che e’ rimasta separata.
Da immagini come queste si e’ capito che la materia oscura non interagisce con la materia ordinaria ma contribuisce solo alla gravita’. La materia oscura non emette e non assorbe le radiazioni elettromagnetiche e quindi non puo’ essere vista con i telescopi. Essa costituisce il 23% della materia presente nell’universo mentre solo il 4,6% e’ dovuto alla materia ordinaria e il rimanente 72% alla cosiddetta energia oscura responsabile dell’accelerazione attuale dell’universo. La quantita’ di materia presente nell’universo non e’ sempre stata costante. La sua percentuale era molto piu’ alta dopo 380000 anni dal big bang quando la radiazione finalmente non venne piu’ assorbita dagli elettroni e l’universo usci’ dal suo stato di opacita’ completa.
In definitiva per sapere quanta massa c’e’ in un ammasso, e dove si trova questa massa, tutto quello che dobbiamo fare e’ misurare le sorgenti di luce che si trovano al di la dell’ammasso e fare entrare in gioco l’effetto lente gravitazionale debole. Tutto qui.