Visualizzazione post con etichetta redshit. Mostra tutti i post
Visualizzazione post con etichetta redshit. Mostra tutti i post

domenica 18 marzo 2018

Una nuova fisica al lavoro nell’Universo?


Nel 1929 Hubble annunciò che la velocita’ radiale delle galassie era proporzionale alla loro distanza. In altre parole piu’ una galassia e’ distante da noi, piu’ la sua velocita’ di allontanamento e’ elevata. Il grafico seguente mostra i dati raccolti da Hubble con la velocita’ delle galassie riportata in ordinata e le loro distanze sulle ascisse:

clip_image001

La pendenza della retta che interpola queste misure è ora nota come costante di Hubble H. Dato che sia i kilometri che i Megaparsec sono unità di distanza, l'unità di misura di H è [1/tempo], essendo la velocita’ il rapporto tra spazio e tempo. Ma cosa rappresenta H? Il suo inverso e’ proprio l’eta’ dell’universo secondo la relazione di Hubble:

V=HD      da cui     D=V/H=Vt   con    t=1/H   appunto l’eta’ dell’universo.

Hubble trovo’ per il rapporto 1/H il valore di circa 2 miliardi di anni. Dal momento che tale valore dovrebbe approssimare l'età dell'Universo, e noi sappiamo (era noto anche nel 1929) che l'età della Terra supera i 2 miliardi di anni, il valore di H trovato da Hubble portò ad un generale scetticismo nei confronti dei modelli cosmologici, e fornì una motivazione a favore del modello stazionario, cioe’ quello di un universo non in espansione.

Tuttavia, pubblicazioni successive misero in luce alcuni errori compiuti da Hubble nelle sue misure. La correzione di questi errori portò ad un ridimensionamento verso il basso del valore della costante di Hubble. Attualmente il valore della costante e’ di 65±8 km/s/Mpc.
Con questo valore di H, l'età approssimativa dell'Universo è di 15 miliardi di anni. Qui di seguito i risultati recenti sulla relazione di Hubble la cui pendenza e’ pari a 65 Km/sec/Mpc.

clip_image003

Ma come faceva Hubble a misurare la velocita’ di una galassia lontana? Utilizzando quello che va sotto il nome di spostamento verso il rosso (redshift). La luce o una qualsisi altra radiazione elettromagnetica emessa da un oggetto in movimento ha una lunghezza d'onda maggiore di quella che aveva all'emissione. Ciò equivale a dire che nel caso della luce il colore si sposta nella direzione del rosso che e’ l'estremo inferiore dello spettro del visibile. Al contrario se un’oggetto si sta avvicinando la luce emessa si sposta verso il blu.

clip_image005

image


Se indichiamo con Le la lunghezza d’onda emessa e con Lo quella osservata e’ possibile scrivere:

1+ z=[(1+v/c)/(1-v/c)]1/2

dove c indica la velocita’ della luce, v la velocita’ dell’oggetto e il parametro z e’ dato da:

z=(Lo-Le)/Le

Quindi dalla misura di z cioe’ dello shift della luce si puo’ risalire alla velocita’ dell’oggetto che ha emesso la luce.

Per misurare la distanza delle galassie invece, Hubble aveva a disposizione tre metodologie ognuna valida per un certo intervallo di distanze. Il metodo piu’ antico e’ quello della parallasse che va bene per stelle non oltre i 500 anni luce. Si tratta di una tecnica geometrica che sfrutta lo spostamento delle stelle in primo piano rispetto a quelle fisse dovuto alla rotazione della terra intorno al sole. Il secondo metodo e’ quello delle Cefeidi, un tipo di stelle la cui luminosita’ varia periodicamente e che permettono di calcolare la loro distanza sfruttando la relazione tra quest’ultima e il periodo della loro luminosita’. L’intervallo di applicabilita’ va fino a circa 10 milioni di anni luce. L’ultimo metodo e’ quello delle supernove. Valutando l’andamento della luminosita’ di queste stelle subito dopo la loro esplosione e’ possibile calcolarne la luminosita’ assoluta e quindi la loro distanza. Questa tecnica permette di arrivare a distanze di alcune centinaia di milioni di anni luce.


clip_image009


Ma ritorniamo adesso alla costante di Hubble. E’ di qualche mese fa la notizia dell’utilizzo del telescopio spaziale Hubble per stabilire la misura piu’ precisa mai ottenuta della costante di Hubble. I risultati sono molto intriganti e sembrano evidenziare che ci sia qualche cosa di inaspettato al lavoro nell’universo. Questo perche’ i risultati confermano una fastidiosa discrepanza che mostra l’universo espandersi piu’ velocemente di quanto previsto dai dati relativi ai primi istanti del big bang. Il team di ricercatori capeggiato dal premio Nobel, Riess incluso anche l’italiano Stefano Casertano e Johns Hopkins, ha utilizzato Hubble per 6 anni aumentando il numero di stelle analizzate e con distanze fino a 10 volte maggiori di quelle ottenute precedentemente. Il valore della velocita’ di espansione ottenuto mostra una discrepanza di circa il 9% rispetto a quello previsto considerando i primi 378.000 anni dopo il Big Bang. Prima delle misure del telescopio Hubble, quelle effettuate dalla Agenzia spaziale Europea grazie al satellite Planck, avevano previsto per la costante di Hubble un valore intorno a 67 Km/sec per Megaparsec e non piu’ alto di 69 Km/sec/Mpc. Ma le misure recenti ottenute dal team di Riess riportano un valore della costante di Hubble di ben 73 Km/sec per Megaparsec, indicando che le galassie si stanno muovendo ad una velocita’ di allontanamento maggiore di quella prevista. I risultati della misura della costante di Hubble sono cosi precisi che gli astrofisici non possono non tener conto di questa incongruenza. Il team ritiene che alcune delle possibili spiegazioni per questa differenza siano legate all’universo oscuro che e’ il 95% della materia/energia contenuta nel nostro universo. La materia normale come stelle, pianeti e gas si crede costituisca solo il 5% del nostro universo. Il rimanente per il 25% e’ materia oscura e il 70% energia oscura, entrambi invisibili e mai rilevati in modo diretto. Vediamo la prima possibilita’. L’energia oscura, gia’ conosciuta in passato come fattore di accelerazione del nostro universo, sta spingendo lontano da noi le galassie con molta piu’ forza di quanto previsto. Questo potrebbe significare che l’accelerazione stessa potrebbe non essere costante ma cambiare nel tempo. Se questo fosse vero bisognerebbe allora rivedere il cosiddetto modello ACDM (Lambda cold dark matter) che spiega l’accelerazione del cosmo con la comparsa e scomparsa di particelle virtuali nello spazio vuoto che stirano lo spazio-tempo. Questo continuo ribollire del vuoto infatti non potrebbe spiegare un accelerazione che cambia col tempo.

clip_image011

Un’altra idea e’ quella che l’universo contenga delle nuove particelle subatomiche che viaggiano ad una velocita’ prossima a quella della luce. Si tratta di particelle velocissime, chiamate collettivamente “radiazione oscura”. Probabilmente si tratta di qualche cosa simile alle note particelle chiamate neutrini, creati nelle reazioni nucleari e nei decadimenti radioattivi. Diversamente da un neutrino normale pero’ che interagisce tramite la forza debole, queste nuove particelle dovrebbero essere influenzate solo dalla forza di gravita’ ed e’ per questo che hanno ricevuto il soprannome di “neutrini sterili”. Per analogia con i fotoni che sono i mediatori della forza elettromagnetica tra particelle, i neutrini sterili dovrebbero essere i mediatori delle interazioni tra particelle di materia oscura. E come per le particelle di materia oscura, anche la radiazione oscura non interagisce con la materia nominale. L’ultima possibile spiegazione e’ che la materia oscura interagisca piu’ fortemente con la materia nominale e/o la radiazione di quanto assunto fino ad ora. Al momento il team di Riess non ha una risposta al problema anche se sta continuando a raccogliere misure di stelle lontane per cercare di abbassare ulteriormente l’incertezza e migliorare la precisione sul valore della costante di Hubble.

Dove e’ possibile arrivare partendo da questo risultato?

Guardando i risultati ottenuti fino ad oggi e’ possibile come riportato da Riess, che l’energia oscura giochi un ruolo importante anche se e’ piu’ probabile che sia una qualche nuova particella o qualche cosa che ha a che fare con come interagisce la materia oscura. Normalmente quest’ultima viene considerata come costituita da WIMP, cioe’ da particelle pesanti che interagiscono debolmente con la materia nominale. Bene e’ possibile che l’interazione in fin dei conti non sia cosi debole come pensato. Questo potrebbe cambiare le cose e dare origine ad un qualche cosa simile all’universo che vediamo noi.

E se lo dice il premio Nobel Riess forse c’e’ da credere. Aspettiamo con impazienza le prossime scoperte. Fate le vostre scommesse. La fisica sta diventando misteriosa e magica.

http://www.wikio.it